diff --git a/BA3 - Physique III/BA3 - Physique III.tex b/BA3 - Physique III/BA3 - Physique III.tex index b803767..e8521b5 100644 --- a/BA3 - Physique III/BA3 - Physique III.tex +++ b/BA3 - Physique III/BA3 - Physique III.tex @@ -13,8 +13,8 @@ $ \nabla \bullet \vec{B} = 0 \hspace{17mm} \nabla \times \vec{B} = \mu_0 \cdot \vec{j} + \frac{1}{c^2} \cdot \frac{\partial \vec{E}}{\partial t} $ \newline & \textbf{Formes intégrales} \newline - $ \oiint_\Sigma \vec{E} \bullet \dif\vec{\sigma} = \frac{Q_{int}}{\varepsilon_0} \hspace{25mm} = \Phi_E $ \hfill Th. de Gauss \newline - $ \oint_\Gamma \vec{B} \bullet \dif\vec{l} = \mu_0 \cdot I + \frac{1}{c^2} \cdot \frac{\dif \Phi_E}{\dif t} \hspace{15mm} I_d = \varepsilon_0 \cdot \frac{\dif \Phi_E}{\dif t} $ \hfill Th. d'Ampère \newline + $ \oiint_\Sigma \vec{E} \bullet \dif\vec{\sigma} = \frac{Q_{int}}{\varepsilon_0} \hspace{21mm} = \Phi_E $ \hfill Th. de Gauss \newline + $ \oint_\Gamma \vec{B} \bullet \dif\vec{l} = \mu_0 \cdot I + \frac{1}{c^2} \cdot \frac{\dif \Phi_E}{\dif t} \hspace{8mm} I_d = \varepsilon_0 \cdot \frac{\dif \Phi_E}{\dif t} $ \hfill Th. d'Ampère \newline $ V = \oint_\Gamma \vec{E} \bullet \dif\vec{l} = - \frac{\dif \Phi_M}{\dif t} $ \hfill Induction \newline \\ \hline