\documentclass[a4paper,10pt]{article} %\documentclass[a4paper,10pt]{scrartcl} \usepackage{xltxtra} \usepackage{pbox} \usepackage{mathtools} \usepackage{amssymb} \usepackage{tabularx} \usepackage[top=13pt, bottom=12pt, left=13pt, right=12pt]{geometry} % \setromanfont[Mapping=tex-text]{Linux Libertine O} % \setsansfont[Mapping=tex-text]{DejaVu Sans} % \setmonofont[Mapping=tex-text]{DejaVu Sans Mono} \title{} \author{} \date{} \let\oldcdot\cdot \let\oldbullet\bullet \let\oldvec\vec \let\olddot\dot \let\oldddot\ddot % \renewcommand{\cdot}{ } \renewcommand{\bullet}{\circ} % \renewcommand{\vec}{\mathbf} % \renewcommand{\dot}[1]{\frac{\mathrm{d}#1}{\mathrm{d}t}} % \renewcommand{\ddot}[1]{\frac{\mathrm{d^2}#1}{\mathrm{d}t^2}} \newcommand{\ccdot}{ } \setlength{\parindent}{0pt} \setlength{\parskip}{0pt} \begin{document} % \maketitle \begin{tabularx}{\textwidth}{ |X|X| } \hline \textbf{Polynômes de Taylor} \newline $\begin{aligned} e^x &= \sum\limits_{k=0}^\infty \frac{x^k}{k!}, &x \in \mathbb{R} \\ \sinh(x) &= \sum\limits_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!}, &x \in \mathbb{R} \\ \cosh(x) &= \sum\limits_{k=0}^\infty \frac{x^{2k}}{(2k)!}, &x \in \mathbb{R} \\ \sin(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}, &x \in \mathbb{R} \\ \cos(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k}}{(2k)!}, &x \in \mathbb{R} \\ \ln(1+x) &= \sum\limits_{k=0}^\infty (-1)^{k+1} \frac{x^k}{k}, &x \in {]-1,1[} \\ \frac{1}{1+x} &= \sum\limits_{k=0}^\infty (-1)^{k} x^k, &x \in {]-1,1[} \\ \arctan(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1}, &x \in {]-1,1[} \\ \end{aligned}$ \newline & \textbf{Intégrales} \newline $\begin{aligned} &\int \frac{f'(x)}{f(x)}\mathrm{d}x &&= \ln \left|f(x)\right| + C \\ &\int \frac{f'(x)}{1+f^2(x)}\mathrm{d}x &&= \arctan \left[f(x)\right] + C \\ &\int \left[f(x)\right]^\alpha f'(x) \mathrm{d}x &&= \frac{\left[f(x)\right]^{\alpha+1}}{\alpha + 1} + C, &\forall \alpha \neq -1 \\ &\int e^{f(x)} f'(x) \mathrm{d}x &&= e^{f(x)} + C \\ &\int \frac{f'(x)}{\sqrt{1-f^2(x)}}\mathrm{d}x &&= \arcsin \left[f(x)\right] + C \\ \end{aligned}$ \newline \\ \end{tabularx} \offinterlineskip \begin{tabularx}{\textwidth}{ |X|X|X| } \hline \textbf{Racine carrée complexe} \newline $\begin{aligned} w = u + vi, z = a + bi, z^2 = w \\ \begin{cases} a^2 - b^2 &= u \\ 2ab &= v \\ a^2 + b^2 &= \sqrt{u^2 + v^2} \\ \end{cases} \end{aligned}$ & \textbf{Somme géométrique} \newline $\begin{aligned} \sum\limits_{k=0}^n q^k &= \frac{1-q^{n+1}}{1-q} \\ \sum\limits_{k=0}^\infty q^k &= \frac{1}{1-q} \\ \end{aligned}$ \newline & \\ \hline \textbf{Exponentielle} \newline $\begin{aligned} \cos(\theta) &= \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sin(\theta) &= \frac{e^{i\theta} - e^{-i\theta}}{2i} \\ \cosh(\theta) &= \frac{e^{\theta} + e^{-\theta}}{2} \\ \sinh(\theta) &= \frac{e^{\theta} - e^{-\theta}}{2} \\ \end{aligned}$ \newline & \textbf{Exponentielle} \newline $\begin{aligned} \lim_{n \to \infty} \left(1 + \frac{L}{n}\right)^n &= e^L \\ \text{De manière\ générale :} \\ \lim_{x \to \infty} f(x) &= +\infty \\ \lim_{x \to \infty} f(x)h(x) &= L \\ \lim_{x \to \infty} \left[1 + h(x)\right]^{f(x)} &= e^L \\ \end{aligned}$ \newline & \textbf{Trigonométrie} \newline $\begin{aligned} \cosh^2(x) - \sinh^2(x) = 1 \\ \cos^2(x) + \sin^2(x) = 1 \\ \sin(x+y) = \sin x \cos y + \cos x \sin y \\ \cos(x+y) = \cos x \cos y + \sin x \sin y \\ \sin x + \sin y = 2 \sin(\frac{x+y}{2})\cos(\frac{x-y}{2}) \\ \sin x - \sin y = 2 \sin(\frac{x-y}{2})\cos(\frac{x+y}{2}) \\ \cos x + \cos y = 2 \cos(\frac{x+y}{2})\cos(\frac{x-y}{2}) \\ \cos x - \cos y = -2 \sin(\frac{x+y}{2})\sin(\frac{x-y}{2}) \\ \end{aligned}$ \newline \\ \hline \multicolumn{2}{|X|}{ \textbf{Angles particuliers} \newline $\begin{aligned} \cos(0) = 1 \quad &\cos(\frac{\pi}{6}) = \frac{1}{2} \quad &\cos(\frac{\pi}{4}) = \frac{1}{2}\sqrt{2} \quad &\cos(\frac{\pi}{3}) = \frac{1}{2}\sqrt{3} \quad &\cos(\frac{\pi}{2}) = 0 \\ \sin(0) = 0 \quad &\sin(\frac{\pi}{6}) = \frac{1}{2}\sqrt{3} \quad &\sin(\frac{\pi}{4}) = \frac{1}{2}\sqrt{2} \quad &\sin(\frac{\pi}{3}) = \frac{1}{2} \quad &\sin(\frac{\pi}{2}) = 1 \\ \end{aligned}$ \newline } & \\ \hline \multicolumn{2}{|X|}{ \textbf{Convergence} \newline $\begin{aligned} &\int_M^\infty x^a e^{-bx} \mathrm{d}x &\text{ converge pour tout } a \in \mathbb{R} \text{ et tout } b > 0 \\ &\int_a^\infty \frac{1}{x^p} \mathrm{d}x &\text{ converge si et seulement si } p > 1 \quad (a > 0) \\ &\int_0^b \frac{1}{x^p} \mathrm{d}x &\text{ converge si et seulement si } p < 1 \\ \end{aligned}$ \newline } & \\ \hline \end{tabularx} \end{document}