\documentclass[fontsize=8pt, paper=a4, pagesize, DIV=calc]{scrartcl} \input{../Base.tex} \title{Formulaire de Physique II} \begin{document} \begin{tabu}to \textwidth{ |X|X| } \hline \textbf{Potentiels} \newline $ F_x = -\frac{\partial U}{\partial x} $ \newline $ \frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x} $ & \textbf{Lagrange} \newline $ U = \sum m \cdot g \cdot h + \sum \frac{1}{2} \cdot k \cdot x^2 $ \newline $ T = \sum \frac{1}{2} \cdot m \cdot v^2 + \sum \frac{1}{2} \cdot I \cdot \omega^2 $ \newline $ L = T -U $ \newline $ \frac{\dif}{\dif t} \left( \frac{\partial}{\partial \dot{q_j}} L \right) - \frac{\partial}{\partial q_j} L = 0 $ \\\hline \textbf{Gaz} \newline $ P \cdot V = n \cdot R \cdot T = N \cdot k_B \cdot T $ \hfill Parfait \newline $ \left( p + \frac{n^2 \cdot a}{V^2} \right) \left( V -n \cdot b \right) = n \cdot R \cdot T $ \hfill Van der Waals & \textbf{Maxwell-Boltzmann} \newline $ P_i = \cte \cdot \e^{-\frac{E_i}{k_B \cdot T}} $ \newline $ \sum P_i = 1 $ \\\hline \textbf{Lois thermodynamiques} \newline $ \dif U = \delta W + \delta Q $ \hfill 1\textsuperscript{ère} \newline $ \dif S = \delta S_{ext} + \delta S_{int} = \frac{\delta Q}{T} + \delta S_{int} $ \hfill 2\textsuperscript{ème} & \textbf{Énergies} \newline $ U = \frac{f}{2} \cdot n \cdot R \cdot T $ \newline $ H = U + P \cdot V = \frac{f}{2} \cdot n \cdot R \cdot T + n \cdot R \cdot T $ \\\hline \textbf{Isentropie} \newline $ P \cdot V^\gamma = \cte $ \newline $ T \cdot V^{\gamma - 1} = \cte $ & \textbf{Énergies II} \newline $ U = C_v \cdot \Delta T $ \newline $ Q = C_v \cdot \Delta T $ \hfill Isochore \newline $ Q = C_p \cdot \Delta T $ \hfill Isobare \newline $ W = - \int p_{ext} \cdot \dif V = -W_{ext} $ \\\hline \textbf{Chaleurs} \newline $ C_p = C_v \cdot \gamma $ \newline $ C_p = C_v + n \cdot R $ \newline $ C_v = \frac{\partial U}{\partial T} = \frac{n \cdot R}{\gamma -1} $ \newline $ C_p = \frac{\partial H}{\partial T} = \frac{\gamma \cdot n \cdot R}{\gamma -1} $ & \textbf{Rendements} \newline $ \eta_{Carnot} = \frac{T_c - T_f}{T_c} $ \newline $ \eta = -\frac{W}{Q_c} $ \hfill Moteur \newline $ \eta = -\frac{Q_c}{W} $ \hfill Récepteur chauffant \newline $ \eta = \frac{Q_f}{W} $ \hfill Récepteur refroidissant \\\hline \textbf{Cycle} \newline $ \circlearrowright $ Cycle moteur \newline $ \circlearrowleft $ Cycle récepteur & \textbf{Cycle II} \newline $ \Delta U = 0 = W + Q_c + Q_f $ \newline $ \Delta S = 0 = \int \frac{\delta Q_c}{T} + \int \frac{\delta Q_f}{T} + S_{int} $ \newline $ W = - \left( Q_c + Q_f \right) $ \\\hline \textbf{Conductibilité} \newline $ \lambda = \frac{1}{\rho \cdot 4 \cdot \sqrt{2} \cdot \pi \cdot R^2} $ \newline $ \rho = \frac{p}{k_B \cdot T} $ \newline $ J_Q = -k \cdot \frac{\partial T}{\partial x} $ \newline $ \frac{\partial Q}{\partial T} = A \cdot \alpha \cdot \frac{\partial T}{\partial x} $ \hfill $ \lambda \ll d $ \newline $ \frac{\partial Q}{\partial T} = \dif A \cdot \kappa \cdot \Delta T $ \hfill $ \lambda \gg d $ & \textbf{Diffusion} \newline $ \frac{\partial \rho \cdot u}{\partial t} + \frac{\partial J_U}{\partial x} = \sigma_U $ \newline $ J_U = -\lambda \cdot \frac{\partial T}{\partial x} $ \newline $ \frac{\partial \rho \cdot u}{\partial t} - \lambda \cdot \frac{\partial^2 T}{\partial x^2} = \sigma_U $ \\\hline \textbf{Lennard-Jones} \newline $ E = 4 \cdot \varepsilon_0 \cdot \left( \left( \frac{r_1}{r} \right)^{12} - \left( \frac{r_1}{r} \right)^6 \right) $ \newline $ E = \varepsilon_0 \cdot \left( \left( \frac{r_0}{r} \right)^{12} - 2 \cdot \left( \frac{r_0}{r} \right)^6 \right) $ & \textbf{Lennard-Jones II} \newline \includegraphics[width=0.2\textwidth, keepaspectratio=true]{./Potentiel de Lennard-Jones.png} \\\hline \end{tabu} \nointerlineskip \begin{tabu}to \textwidth{ |X|X|X| } \textbf{Diagramme de phase} \newline \includegraphics[width=0.3\textwidth, keepaspectratio=true]{./Diagramme de phase.png} & \textbf{Diagramme P-V} \newline \includegraphics[width=0.3\textwidth, keepaspectratio=true]{./Diagramme P-V.png} & \textbf{Diagramme P-T} \newline \includegraphics[width=0.3\textwidth, keepaspectratio=true]{./Diagramme P-T.png} \\\hline \end{tabu} \begin{tabu}to \textwidth{ |X|X|X|X|X| } \hline \textit{Résultats uniquement pour le cas réversible} & Isotherme & Isobare & Isochore & Adiabatique \\\hline Constantes & $ \begin{aligned} P \cdot V = \cte \end{aligned} $ & $ \begin{aligned} \frac{V}{T} = \cte \end{aligned} $ & $ \begin{aligned} \frac{P}{T} = \cte \end{aligned} $ & $ \begin{aligned} P \cdot V^\gamma = \cte \\ T \cdot V^{\gamma - 1} = \cte \end{aligned} $ \\\hline Énergie interne & $ \begin{aligned} \Delta U & = 0 \end{aligned} $ & $ \begin{aligned} \Delta U & = C_v \cdot \Delta T \\ & = \frac{n \cdot R}{\gamma - 1} \cdot \Delta T \\ & = \frac{p_0}{\gamma - 1} \cdot \Delta V \\ & = C_v \cdot \frac{T_0}{V_0} \cdot \Delta V \end{aligned} $ & $ \begin{aligned} \Delta U & = C_v \cdot \Delta T \\ & = \frac{n \cdot R}{\gamma - 1} \cdot \Delta T \\ & = \frac{V_0}{\gamma - 1} \cdot \Delta p \\ & = C_v \cdot \frac{T_0}{p_0} \cdot \Delta p \end{aligned} $ & $ \begin{aligned} \Delta U & = C_v \cdot \Delta T \\ & = \frac{n \cdot R}{\gamma - 1} \cdot \Delta T \\ & = \frac{p_0 \cdot V_0^\gamma}{\gamma - 1} \cdot \Delta \left( V^{1-\gamma} \right) \end{aligned} $ \\\hline Chaleur & $ \begin{aligned} Q & = n \cdot R \cdot T_0 \cdot \ln \left( \frac{V_1}{V_0} \right) \\ & = n \cdot R \cdot T_0 \cdot \ln \left( \frac{p_1}{p_0} \right) \\ \end{aligned} $ & $ \begin{aligned} Q & = C_p \cdot \Delta T \\ & = \frac{\gamma \cdot n \cdot R}{\gamma - 1} \cdot \Delta T \\ & = \frac{\gamma \cdot p_0}{\gamma - 1} \cdot \Delta V \\ \end{aligned} $ & $ \begin{aligned} Q & = C_v \cdot \Delta T \\ & = \frac{n \cdot R}{\gamma - 1} \cdot \Delta T \\ & = \frac{V_0}{\gamma - 1} \cdot \Delta p \\ \end{aligned} $ & $ \begin{aligned} Q & = 0 \end{aligned} $ \\\hline Travail & $ \begin{aligned} W & = -n \cdot R \cdot T_0 \cdot \ln \left( \frac{V_1}{V_0} \right) \\ & = -n \cdot R \cdot T_0 \cdot \ln \left( \frac{p_1}{p_0} \right) \\ \end{aligned} $ & $ \begin{aligned} W & = -p_0 \cdot \Delta V \\ & = -n \cdot R \cdot \Delta T \\ & = -p_0 \cdot \frac{V_0}{T_0} \cdot \Delta V \\ \end{aligned} $ & $ \begin{aligned} W & = 0 \\ \end{aligned} $ & $ \begin{aligned} W & = C_v \cdot \Delta T \\ & = \frac{n \cdot R}{\gamma - 1} \cdot \Delta T \\ & = \frac{p_0 \cdot V_0^\gamma}{\gamma - 1} \cdot \Delta \left( V^{1-\gamma} \right) \end{aligned} $ \\\hline Entropie & $ \begin{aligned} \Delta S & = n \cdot R \cdot \ln \left( \frac{V_1}{V_0} \right) \\ & = n \cdot R \cdot \ln \left( \frac{p_1}{p_0} \right) \\ \end{aligned} $ & $ \begin{aligned} \Delta S & = C_p \cdot \ln \left( \frac{V_1}{V_0} \right) \\ & = \frac{\gamma \cdot n \cdot R}{\gamma - 1} \cdot \ln \left( \frac{V_1}{V_0} \right) \\ & = C_p \cdot \ln \left( \frac{T_1}{T_0} \right) \\ & = \frac{\gamma \cdot n \cdot R}{\gamma - 1} \cdot \ln \left( \frac{T_1}{T_0} \right) \end{aligned} $ & $ \begin{aligned} \Delta S & = C_v \cdot \ln \left( \frac{p_1}{p_0} \right) \\ & = \frac{n \cdot R}{\gamma - 1} \cdot \ln \left( \frac{p_1}{p_0} \right) \\ & = C_v \cdot \ln \left( \frac{T_1}{T_0} \right) \\ & = \frac{n \cdot R}{\gamma - 1} \cdot \ln \left( \frac{T_1}{T_0} \right) \end{aligned} $ & $ \begin{aligned} \Delta S & = 0 \end{aligned} $ \\\hline \end{tabu} \end{document}