Initializing TM repository

This commit is contained in:
2012-09-05 20:01:37 +02:00
commit d4f1f57a01
19 changed files with 3139 additions and 0 deletions

View File

@ -0,0 +1,290 @@
/***************************************************
This is a library for the BMP085 Barometric Pressure & Temp Sensor
Designed specifically to work with the Adafruit BMP085 Breakout
----> https://www.adafruit.com/products/391
These displays use I2C to communicate, 2 pins are required to
interface
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, all text above must be included in any redistribution
****************************************************/
#include "BMP085.h"
#include <util/delay.h>
BMP085::BMP085() {
}
void BMP085::begin(uint8_t mode) {
if (mode > BMP085_ULTRAHIGHRES)
mode = BMP085_ULTRAHIGHRES;
oversampling = mode;
Wire.begin();
/* read calibration data */
ac1 = read16(BMP085_CAL_AC1);
ac2 = read16(BMP085_CAL_AC2);
ac3 = read16(BMP085_CAL_AC3);
ac4 = read16(BMP085_CAL_AC4);
ac5 = read16(BMP085_CAL_AC5);
ac6 = read16(BMP085_CAL_AC6);
b1 = read16(BMP085_CAL_B1);
b2 = read16(BMP085_CAL_B2);
mb = read16(BMP085_CAL_MB);
mc = read16(BMP085_CAL_MC);
md = read16(BMP085_CAL_MD);
#if (BMP085_DEBUG == 1)
Serial.print("ac1 = "); Serial.println(ac1, DEC);
Serial.print("ac2 = "); Serial.println(ac2, DEC);
Serial.print("ac3 = "); Serial.println(ac3, DEC);
Serial.print("ac4 = "); Serial.println(ac4, DEC);
Serial.print("ac5 = "); Serial.println(ac5, DEC);
Serial.print("ac6 = "); Serial.println(ac6, DEC);
Serial.print("b1 = "); Serial.println(b1, DEC);
Serial.print("b2 = "); Serial.println(b2, DEC);
Serial.print("mb = "); Serial.println(mb, DEC);
Serial.print("mc = "); Serial.println(mc, DEC);
Serial.print("md = "); Serial.println(md, DEC);
#endif
}
uint16_t BMP085::readRawTemperature(void) {
write8(BMP085_CONTROL, BMP085_READTEMPCMD);
_delay_ms(5);
#if BMP085_DEBUG == 1
Serial.print("Raw temp: "); Serial.println(read16(BMP085_TEMPDATA));
#endif
return read16(BMP085_TEMPDATA);
}
uint32_t BMP085::readRawPressure(void) {
uint32_t raw;
write8(BMP085_CONTROL, BMP085_READPRESSURECMD + (oversampling << 6));
if (oversampling == BMP085_ULTRALOWPOWER)
_delay_ms(5);
else if (oversampling == BMP085_STANDARD)
_delay_ms(8);
else if (oversampling == BMP085_HIGHRES)
_delay_ms(14);
else
_delay_ms(26);
raw = read16(BMP085_PRESSUREDATA);
raw <<= 8;
raw |= read8(BMP085_PRESSUREDATA+2);
raw >>= (8 - oversampling);
/* this pull broke stuff, look at it later?
if (oversampling==0) {
raw <<= 8;
raw |= read8(BMP085_PRESSUREDATA+2);
raw >>= (8 - oversampling);
}
*/
#if BMP085_DEBUG == 1
Serial.print("Raw pressure: "); Serial.println(raw);
#endif
return raw;
}
int32_t BMP085::readPressure(void) {
int32_t UT, UP, B3, B5, B6, X1, X2, X3, p;
uint32_t B4, B7;
UT = readRawTemperature();
UP = readRawPressure();
#if BMP085_DEBUG == 1
// use datasheet numbers!
UT = 27898;
UP = 23843;
ac6 = 23153;
ac5 = 32757;
mc = -8711;
md = 2868;
b1 = 6190;
b2 = 4;
ac3 = -14383;
ac2 = -72;
ac1 = 408;
ac4 = 32741;
oversampling = 0;
#endif
// do temperature calculations
X1 = ((UT - (int32_t)ac6) * (int32_t)ac5) >> 15;
X2 = ((int32_t)mc << 11) - (X1 + md)/2; // round up
X2 /= (X1 + md);
B5 = X1 + X2;
#if BMP085_DEBUG == 1
Serial.print("X1 = "); Serial.println(X1);
Serial.print("X2 = "); Serial.println(X2);
Serial.print("B5 = "); Serial.println(B5);
#endif
// do pressure calcs
B6 = B5 - 4000;
X1 = ((int32_t)b2 * ( (B6 * B6)>>12 )) >> 11;
X2 = ((int32_t)ac2 * B6) >> 11;
X3 = X1 + X2;
B3 = ((((int32_t)ac1*4 + X3) << oversampling) + 2) / 4;
#if BMP085_DEBUG == 1
Serial.print("B6 = "); Serial.println(B6);
Serial.print("X1 = "); Serial.println(X1);
Serial.print("X2 = "); Serial.println(X2);
Serial.print("B3 = "); Serial.println(B3);
#endif
X1 = ((int32_t)ac3 * B6) >> 13;
X2 = ((int32_t)b1 * ((B6 * B6) >> 12)) >> 16;
X3 = ((X1 + X2) + 2) >> 2;
B4 = ((uint32_t)ac4 * (uint32_t)(X3 + 32768)) >> 15;
B7 = ((uint32_t)UP - B3) * (uint32_t)( 50000UL >> oversampling );
#if BMP085_DEBUG == 1
Serial.print("X1 = "); Serial.println(X1);
Serial.print("X2 = "); Serial.println(X2);
Serial.print("B4 = "); Serial.println(B4);
Serial.print("B7 = "); Serial.println(B7);
#endif
if (B7 < 0x80000000) {
p = (B7 * 2) / B4;
} else {
p = (B7 / B4) * 2;
}
X1 = (p >> 8) * (p >> 8);
X1 = (X1 * 3038) >> 16;
X2 = (-7357 * p) >> 16;
#if BMP085_DEBUG == 1
Serial.print("p = "); Serial.println(p);
Serial.print("X1 = "); Serial.println(X1);
Serial.print("X2 = "); Serial.println(X2);
#endif
p = p + ((X1 + X2 + (int32_t)3791)>>4);
#if BMP085_DEBUG == 1
Serial.print("p = "); Serial.println(p);
#endif
return p;
}
float BMP085::readTemperature(void) {
int32_t UT, X1, X2, B5; // following ds convention
float temp;
UT = readRawTemperature();
#if BMP085_DEBUG == 1
// use datasheet numbers!
UT = 27898;
ac6 = 23153;
ac5 = 32757;
mc = -8711;
md = 2868;
#endif
// step 1
X1 = ((UT - (int32_t)ac6) * (int32_t)ac5) >> 15;
X2 = ((int32_t)mc << 11) / (X1 + (int32_t)md);
B5 = X1 + X2;
temp = (B5 + 8) >> 4;
temp /= 10;
return temp;
}
float BMP085::readAltitude(float sealevelPressure) {
float altitude;
float pressure = readPressure();
altitude = 44330 * (1.0 - pow(pressure /sealevelPressure,0.1903));
return altitude;
}
/*********************************************************************/
uint8_t BMP085::read8(uint8_t a) {
uint8_t ret;
Wire.beginTransmission(BMP085_I2CADDR); // start transmission to device
#if (ARDUINO >= 100)
Wire.write(a); // sends register address to read from
#else
Wire.send(a); // sends register address to read from
#endif
Wire.endTransmission(); // end transmission
Wire.beginTransmission(BMP085_I2CADDR); // start transmission to device
Wire.requestFrom(BMP085_I2CADDR, 1);// send data n-bytes read
#if (ARDUINO >= 100)
ret = Wire.read(); // receive DATA
#else
ret = Wire.receive(); // receive DATA
#endif
Wire.endTransmission(); // end transmission
return ret;
}
uint16_t BMP085::read16(uint8_t a) {
uint16_t ret;
Wire.beginTransmission(BMP085_I2CADDR); // start transmission to device
#if (ARDUINO >= 100)
Wire.write(a); // sends register address to read from
#else
Wire.send(a); // sends register address to read from
#endif
Wire.endTransmission(); // end transmission
Wire.beginTransmission(BMP085_I2CADDR); // start transmission to device
Wire.requestFrom(BMP085_I2CADDR, 2);// send data n-bytes read
#if (ARDUINO >= 100)
ret = Wire.read(); // receive DATA
ret <<= 8;
ret |= Wire.read(); // receive DATA
#else
ret = Wire.receive(); // receive DATA
ret <<= 8;
ret |= Wire.receive(); // receive DATA
#endif
Wire.endTransmission(); // end transmission
return ret;
}
void BMP085::write8(uint8_t a, uint8_t d) {
Wire.beginTransmission(BMP085_I2CADDR); // start transmission to device
#if (ARDUINO >= 100)
Wire.write(a); // sends register address to read from
Wire.write(d); // write data
#else
Wire.send(a); // sends register address to read from
Wire.send(d); // write data
#endif
Wire.endTransmission(); // end transmission
}

View File

@ -0,0 +1,71 @@
/***************************************************
This is a library for the BMP085 Barometric Pressure & Temp Sensor
Designed specifically to work with the Adafruit BMP085 Breakout
----> https://www.adafruit.com/products/391
These displays use I2C to communicate, 2 pins are required to
interface
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, all text above must be included in any redistribution
****************************************************/
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "Wire.h"
#define BMP085_DEBUG 0
#define BMP085_I2CADDR 0x77
#define BMP085_ULTRALOWPOWER 0
#define BMP085_STANDARD 1
#define BMP085_HIGHRES 2
#define BMP085_ULTRAHIGHRES 3
#define BMP085_CAL_AC1 0xAA // R Calibration data (16 bits)
#define BMP085_CAL_AC2 0xAC // R Calibration data (16 bits)
#define BMP085_CAL_AC3 0xAE // R Calibration data (16 bits)
#define BMP085_CAL_AC4 0xB0 // R Calibration data (16 bits)
#define BMP085_CAL_AC5 0xB2 // R Calibration data (16 bits)
#define BMP085_CAL_AC6 0xB4 // R Calibration data (16 bits)
#define BMP085_CAL_B1 0xB6 // R Calibration data (16 bits)
#define BMP085_CAL_B2 0xB8 // R Calibration data (16 bits)
#define BMP085_CAL_MB 0xBA // R Calibration data (16 bits)
#define BMP085_CAL_MC 0xBC // R Calibration data (16 bits)
#define BMP085_CAL_MD 0xBE // R Calibration data (16 bits)
#define BMP085_CONTROL 0xF4
#define BMP085_TEMPDATA 0xF6
#define BMP085_PRESSUREDATA 0xF6
#define BMP085_READTEMPCMD 0x2E
#define BMP085_READPRESSURECMD 0x34
class BMP085 {
public:
BMP085();
void begin(uint8_t mode = BMP085_ULTRAHIGHRES); // by default go highres
float readTemperature(void);
int32_t readPressure(void);
float readAltitude(float sealevelPressure = 101325); // std atmosphere
uint16_t readRawTemperature(void);
uint32_t readRawPressure(void);
private:
uint8_t read8(uint8_t addr);
uint16_t read16(uint8_t addr);
void write8(uint8_t addr, uint8_t data);
uint8_t oversampling;
int16_t ac1, ac2, ac3, b1, b2, mb, mc, md;
uint16_t ac4, ac5, ac6;
};

View File

@ -0,0 +1,263 @@
// Code by JeeLabs http://news.jeelabs.org/code/
// Released to the public domain! Enjoy!
//
// Modified for Chronodot / DS3132 with
// temperature data by Stephanie Maks
// http://planetstephanie.net/
#include <Wire.h>
#include <avr/pgmspace.h>
#include "Chronodot.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define CHRONODOT_ADDRESS 0x68
#define SECONDS_PER_DAY 86400L
#define SECONDS_FROM_1970_TO_2000 946684800
////////////////////////////////////////////////////////////////////////////////
// utility code, some of this could be exposed in the DateTime API if needed
static uint8_t daysInMonth [] PROGMEM = { 31,28,31,30,31,30,31,31,30,31,30,31 };
// number of days since 2000/01/01, valid for 2001..2099
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
if (y >= 2000)
y -= 2000;
uint16_t days = d;
for (uint8_t i = 1; i < m; ++i)
days += pgm_read_byte(daysInMonth + i - 1);
if (m > 2 && y % 4 == 0)
++days;
return days + 365 * y + (y + 3) / 4 - 1;
}
static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
return ((days * 24L + h) * 60 + m) * 60 + s;
}
////////////////////////////////////////////////////////////////////////////////
// DateTime implementation - ignores time zones and DST changes
// NOTE: also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_second
DateTime::DateTime (uint32_t t) {
t -= SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970
ss = t % 60;
t /= 60;
mm = t % 60;
t /= 60;
hh = t % 24;
uint16_t days = t / 24;
uint8_t leap;
for (yOff = 0; ; ++yOff) {
leap = yOff % 4 == 0;
if (days < 365 + leap)
break;
days -= 365 + leap;
}
for (m = 1; ; ++m) {
uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
if (leap && m == 2)
++daysPerMonth;
if (days < daysPerMonth)
break;
days -= daysPerMonth;
}
d = days + 1;
}
DateTime::DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec, int tempF, float tempC) {
if (year >= 2000)
year -= 2000;
yOff = year;
m = month;
d = day;
hh = hour;
mm = min;
ss = sec;
ttf = tempF;
ttc = tempC;
}
static uint8_t conv2d(const char* p) {
uint8_t v = 0;
if ('0' <= *p && *p <= '9')
v = *p - '0';
return 10 * v + *++p - '0';
}
// A convenient constructor for using "the compiler's time":
// DateTime now (__DATE__, __TIME__);
// NOTE: using PSTR would further reduce the RAM footprint
DateTime::DateTime (const char* date, const char* time) {
// sample input: date = "Dec 26 2009", time = "12:34:56"
yOff = conv2d(date + 9);
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
switch (date[0]) {
case 'J': m = date[1] == 'a' ? 1 : m = date[2] == 'n' ? 6 : 7; break;
case 'F': m = 2; break;
case 'A': m = date[2] == 'r' ? 4 : 8; break;
case 'M': m = date[2] == 'r' ? 3 : 5; break;
case 'S': m = 9; break;
case 'O': m = 10; break;
case 'N': m = 11; break;
case 'D': m = 12; break;
}
d = conv2d(date + 4);
hh = conv2d(time);
mm = conv2d(time + 3);
ss = conv2d(time + 6);
}
uint8_t DateTime::dayOfWeek() const {
uint16_t day = date2days(yOff, m, d);
return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6
}
long DateTime::secondstime(void) const {
long t;
uint16_t days = date2days(yOff, m, d);
t = time2long(days, hh, mm, ss);
return t;
}
uint32_t DateTime::unixtime(void) const {
uint32_t t;
uint16_t days = date2days(yOff, m, d);
t = time2long(days, hh, mm, ss);
t += SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000
return t;
}
////////////////////////////////////////////////////////////////////////////////
// RTC_DS3231 implementation
static uint8_t bcd2bin (uint8_t val) { return val - 6 * (val >> 4); }
static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }
uint8_t Chronodot::begin(void) {
return 1;
}
uint8_t Chronodot::isrunning(void) {
Wire.beginTransmission(CHRONODOT_ADDRESS);
#if ARDUINO >= 100
Wire.write((byte)0x0F);
#else
Wire.send(0x0F);
#endif
Wire.endTransmission();
Wire.requestFrom(CHRONODOT_ADDRESS, 1);
#if ARDUINO >= 100
uint8_t ss = Wire.read();
#else
uint8_t ss = Wire.receive();
#endif
return !(ss>>7);
}
void Chronodot::adjust(const DateTime& dt) {
// send new date & time to chronodot
Wire.beginTransmission(CHRONODOT_ADDRESS);
#if ARDUINO >= 100
Wire.write((byte)0); // memory address
Wire.write(bin2bcd(dt.second())); // byte 0
Wire.write(bin2bcd(dt.minute())); // byte 1
Wire.write(bin2bcd(dt.hour())); // byte 2
Wire.write(bin2bcd(0)); // byte 3
Wire.write(bin2bcd(dt.day())); // byte 4
Wire.write(bin2bcd(dt.month())); // byte 5
Wire.write(bin2bcd(dt.year() - 2000)); // byte 6
#else
Wire.send(0);
Wire.send(bin2bcd(dt.second()));
Wire.send(bin2bcd(dt.minute()));
Wire.send(bin2bcd(dt.hour()));
Wire.send(bin2bcd(0));
Wire.send(bin2bcd(dt.day()));
Wire.send(bin2bcd(dt.month()));
Wire.send(bin2bcd(dt.year() - 2000));
#endif
Wire.endTransmission();
// now get the control byte - we need to set bit 7 to zero
Wire.beginTransmission(CHRONODOT_ADDRESS);
#if ARDUINO >= 100
Wire.write((byte)0x0F);
#else
Wire.send(0x0F);
#endif
Wire.endTransmission();
Wire.requestFrom(CHRONODOT_ADDRESS, 1);
#if ARDUINO >= 100
uint8_t ss = Wire.read();
#else
uint8_t ss = Wire.receive();
#endif
ss &= ~(1 << 7); // clear OSF bit
Wire.beginTransmission(CHRONODOT_ADDRESS);
#if ARDUINO >= 100
Wire.write((byte)0x0F);
Wire.write((byte)ss);
#else
Wire.send(0x0F);
Wire.send(ss);
#endif
Wire.endTransmission();
}
DateTime Chronodot::now() {
Wire.beginTransmission(CHRONODOT_ADDRESS);
#if ARDUINO >= 100
Wire.write((byte)0);
#else
Wire.send(0);
#endif
Wire.endTransmission();
Wire.requestFrom(CHRONODOT_ADDRESS, 19);
byte blah[20];
int i;
for(i=0; i<20; i++) {
#if ARDUINO >= 100
blah[i] = Wire.read();
#else
blah[i] = Wire.receive();
#endif
}
uint8_t ss = bcd2bin(blah[0] & 0x7F);
uint8_t mm = bcd2bin(blah[1]);
uint8_t hh = bcd2bin(blah[2]);
uint8_t d = bcd2bin(blah[4]);
uint8_t m = bcd2bin(blah[5]);
uint16_t y = bcd2bin(blah[6]) + 2000;
float ttc = (float)(int)blah[17];
byte portion = blah[18];
if(portion == 0b01000000) ttc += 0.25;
if(portion == 0b10000000) ttc += 0.5;
if(portion == 0b11000000) ttc += 0.75;
float degF = (((ttc * 9.0) / 5.0) + 32.5);
int ttf = (int)degF;
return DateTime (y, m, d, hh, mm, ss, ttf, ttc);
}
////////////////////////////////////////////////////////////////////////////////
// RTC_Millis implementation
long RTC_Millis::offset = 0;
void RTC_Millis::adjust(const DateTime& dt) {
offset = dt.unixtime() - millis() / 1000;
}
DateTime RTC_Millis::now() {
return (uint32_t)(offset + millis() / 1000);
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,60 @@
// Code by JeeLabs http://news.jeelabs.org/code/
// Released to the public domain! Enjoy!
//
// Modified for Chronodot / DS3132 with
// temperature data by Stephanie Maks
// http://planetstephanie.net/
#ifndef CHRONODOT_H
#define CHRONODOT_H
// Simple general-purpose date/time class (no TZ / DST / leap second handling!)
class DateTime {
public:
DateTime (uint32_t t =0);
DateTime (uint16_t year, uint8_t month, uint8_t day,
uint8_t hour =0, uint8_t min =0, uint8_t sec =0, int tempF =0, float tempC = 0.0);
DateTime (const char* date, const char* time);
uint16_t year() const { return 2000 + yOff; }
uint8_t month() const { return m; }
uint8_t day() const { return d; }
uint8_t hour() const { return hh; }
uint8_t minute() const { return mm; }
uint8_t second() const { return ss; }
int tempF() const { return ttf; }
float tempC() const { return ttc; }
uint8_t dayOfWeek() const;
// 32-bit times as seconds since 1/1/2000
long secondstime() const;
// 32-bit times as seconds since 1/1/1970
uint32_t unixtime(void) const;
protected:
uint8_t yOff, m, d, hh, mm, ss;
int ttf;
float ttc;
};
// Chronodot based on the DS3231 chip connected via I2C and the Wire library
class Chronodot {
public:
static uint8_t begin(void);
static void adjust(const DateTime& dt);
uint8_t isrunning(void);
static DateTime now();
};
// RTC using the internal millis() clock, has to be initialized before use
// NOTE: this clock won't be correct once the millis() timer rolls over (>49d?)
class RTC_Millis {
public:
static void begin(const DateTime& dt) { adjust(dt); }
static void adjust(const DateTime& dt);
static DateTime now();
protected:
static long offset;
};
#endif CHRONODOT_H

View File

@ -0,0 +1,160 @@
/* DHT library
MIT license
written by Adafruit Industries
*/
#include "DHT.h"
DHT::DHT(uint8_t pin, uint8_t type) {
_pin = pin;
_type = type;
firstreading = true;
}
void DHT::begin(void) {
// set up the pins!
pinMode(_pin, INPUT);
digitalWrite(_pin, HIGH);
_lastreadtime = 0;
}
//boolean S == Scale. True == Farenheit; False == Celcius
float DHT::readTemperature(bool S) {
float f;
if (read()) {
switch (_type) {
case DHT11:
f = data[2];
if(S)
f = convertCtoF(f);
return f;
case DHT22:
case DHT21:
f = data[2] & 0x7F;
f *= 256;
f += data[3];
f /= 10;
if (data[2] & 0x80)
f *= -1;
if(S)
f = convertCtoF(f);
return f;
}
}
Serial.print("Read fail");
return NAN;
}
float DHT::convertCtoF(float c) {
return c * 9 / 5 + 32;
}
float DHT::readHumidity(void) {
float f;
if (read()) {
switch (_type) {
case DHT11:
f = data[0];
return f;
case DHT22:
case DHT21:
f = data[0];
f *= 256;
f += data[1];
f /= 10;
return f;
}
}
Serial.print("Read fail");
return NAN;
}
boolean DHT::read(void) {
uint8_t laststate = HIGH;
uint8_t counter = 0;
uint8_t j = 0, i;
unsigned long currenttime;
// pull the pin high and wait 250 milliseconds
digitalWrite(_pin, HIGH);
delay(250);
currenttime = millis();
if (currenttime < _lastreadtime) {
// ie there was a rollover
_lastreadtime = 0;
}
if (!firstreading && ((currenttime - _lastreadtime) < 2000)) {
return true; // return last correct measurement
//delay(2000 - (currenttime - _lastreadtime));
}
firstreading = false;
/*
Serial.print("Currtime: "); Serial.print(currenttime);
Serial.print(" Lasttime: "); Serial.print(_lastreadtime);
*/
_lastreadtime = millis();
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// now pull it low for ~20 milliseconds
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20);
cli();
digitalWrite(_pin, HIGH);
delayMicroseconds(40);
pinMode(_pin, INPUT);
// read in timings
for ( i=0; i< MAXTIMINGS; i++) {
counter = 0;
while (digitalRead(_pin) == laststate) {
counter++;
delayMicroseconds(1);
if (counter == 255) {
break;
}
}
laststate = digitalRead(_pin);
if (counter == 255) break;
// ignore first 3 transitions
if ((i >= 4) && (i%2 == 0)) {
// shove each bit into the storage bytes
data[j/8] <<= 1;
if (counter > 6)
data[j/8] |= 1;
j++;
}
}
sei();
/*
Serial.println(j, DEC);
Serial.print(data[0], HEX); Serial.print(", ");
Serial.print(data[1], HEX); Serial.print(", ");
Serial.print(data[2], HEX); Serial.print(", ");
Serial.print(data[3], HEX); Serial.print(", ");
Serial.print(data[4], HEX); Serial.print(" =? ");
Serial.println(data[0] + data[1] + data[2] + data[3], HEX);
*/
// check we read 40 bits and that the checksum matches
if ((j >= 40) &&
(data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) ) {
return true;
}
return false;
}

View File

@ -0,0 +1,36 @@
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
/* DHT library
MIT license
written by Adafruit Industries
*/
// how many timing transitions we need to keep track of. 2 * number bits + extra
#define MAXTIMINGS 85
#define DHT11 11
#define DHT22 22
#define DHT21 21
#define AM2301 21
class DHT {
private:
uint8_t data[6];
uint8_t _pin, _type;
boolean read(void);
unsigned long _lastreadtime;
boolean firstreading;
public:
DHT(uint8_t pin, uint8_t type);
void begin(void);
float readTemperature(bool S=false);
float convertCtoF(float);
float readHumidity(void);
};

View File

@ -0,0 +1,298 @@
/**************************************************************************/
/*!
@file tsl2561.c
@author K. Townsend (microBuilder.eu / adafruit.com)
@section LICENSE
Software License Agreement (BSD License)
Copyright (c) 2010, microBuilder SARL, Adafruit Industries
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**************************************************************************/
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdlib.h>
#include "TSL2561.h"
TSL2561::TSL2561(uint8_t addr) {
_addr = addr;
_initialized = false;
_integration = TSL2561_INTEGRATIONTIME_13MS;
_gain = TSL2561_GAIN_16X;
// we cant do wire initialization till later, because we havent loaded Wire yet
}
boolean TSL2561::begin(void) {
Wire.begin();
// Initialise I2C
Wire.beginTransmission(_addr);
#if ARDUINO >= 100
Wire.write(TSL2561_REGISTER_ID);
#else
Wire.send(TSL2561_REGISTER_ID);
#endif
Wire.endTransmission();
Wire.requestFrom(_addr, 1);
#if ARDUINO >= 100
int x = Wire.read();
#else
int x = Wire.receive();
#endif
//Serial.print("0x"); Serial.println(x, HEX);
if (x & 0x0A ) {
//Serial.println("Found TSL2561");
} else {
return false;
}
_initialized = true;
// Set default integration time and gain
setTiming(_integration);
setGain(_gain);
// Note: by default, the device is in power down mode on bootup
disable();
return true;
}
void TSL2561::enable(void)
{
if (!_initialized) begin();
// Enable the device by setting the control bit to 0x03
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_CONTROL, TSL2561_CONTROL_POWERON);
}
void TSL2561::disable(void)
{
if (!_initialized) begin();
// Disable the device by setting the control bit to 0x03
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_CONTROL, TSL2561_CONTROL_POWEROFF);
}
void TSL2561::setGain(tsl2561Gain_t gain) {
if (!_initialized) begin();
enable();
_gain = gain;
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, _integration | _gain);
disable();
}
void TSL2561::setTiming(tsl2561IntegrationTime_t integration)
{
if (!_initialized) begin();
enable();
_integration = integration;
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, _integration | _gain);
disable();
}
uint32_t TSL2561::calculateLux(uint16_t ch0, uint16_t ch1)
{
unsigned long chScale;
unsigned long channel1;
unsigned long channel0;
switch (_integration)
{
case TSL2561_INTEGRATIONTIME_13MS:
chScale = TSL2561_LUX_CHSCALE_TINT0;
break;
case TSL2561_INTEGRATIONTIME_101MS:
chScale = TSL2561_LUX_CHSCALE_TINT1;
break;
default: // No scaling ... integration time = 402ms
chScale = (1 << TSL2561_LUX_CHSCALE);
break;
}
// Scale for gain (1x or 16x)
if (!_gain) chScale = chScale << 4;
// scale the channel values
channel0 = (ch0 * chScale) >> TSL2561_LUX_CHSCALE;
channel1 = (ch1 * chScale) >> TSL2561_LUX_CHSCALE;
// find the ratio of the channel values (Channel1/Channel0)
unsigned long ratio1 = 0;
if (channel0 != 0) ratio1 = (channel1 << (TSL2561_LUX_RATIOSCALE+1)) / channel0;
// round the ratio value
unsigned long ratio = (ratio1 + 1) >> 1;
unsigned int b, m;
#ifdef TSL2561_PACKAGE_CS
if ((ratio >= 0) && (ratio <= TSL2561_LUX_K1C))
{b=TSL2561_LUX_B1C; m=TSL2561_LUX_M1C;}
else if (ratio <= TSL2561_LUX_K2C)
{b=TSL2561_LUX_B2C; m=TSL2561_LUX_M2C;}
else if (ratio <= TSL2561_LUX_K3C)
{b=TSL2561_LUX_B3C; m=TSL2561_LUX_M3C;}
else if (ratio <= TSL2561_LUX_K4C)
{b=TSL2561_LUX_B4C; m=TSL2561_LUX_M4C;}
else if (ratio <= TSL2561_LUX_K5C)
{b=TSL2561_LUX_B5C; m=TSL2561_LUX_M5C;}
else if (ratio <= TSL2561_LUX_K6C)
{b=TSL2561_LUX_B6C; m=TSL2561_LUX_M6C;}
else if (ratio <= TSL2561_LUX_K7C)
{b=TSL2561_LUX_B7C; m=TSL2561_LUX_M7C;}
else if (ratio > TSL2561_LUX_K8C)
{b=TSL2561_LUX_B8C; m=TSL2561_LUX_M8C;}
#else
if ((ratio >= 0) && (ratio <= TSL2561_LUX_K1T))
{b=TSL2561_LUX_B1T; m=TSL2561_LUX_M1T;}
else if (ratio <= TSL2561_LUX_K2T)
{b=TSL2561_LUX_B2T; m=TSL2561_LUX_M2T;}
else if (ratio <= TSL2561_LUX_K3T)
{b=TSL2561_LUX_B3T; m=TSL2561_LUX_M3T;}
else if (ratio <= TSL2561_LUX_K4T)
{b=TSL2561_LUX_B4T; m=TSL2561_LUX_M4T;}
else if (ratio <= TSL2561_LUX_K5T)
{b=TSL2561_LUX_B5T; m=TSL2561_LUX_M5T;}
else if (ratio <= TSL2561_LUX_K6T)
{b=TSL2561_LUX_B6T; m=TSL2561_LUX_M6T;}
else if (ratio <= TSL2561_LUX_K7T)
{b=TSL2561_LUX_B7T; m=TSL2561_LUX_M7T;}
else if (ratio > TSL2561_LUX_K8T)
{b=TSL2561_LUX_B8T; m=TSL2561_LUX_M8T;}
#endif
unsigned long temp;
temp = ((channel0 * b) - (channel1 * m));
// do not allow negative lux value
if (temp < 0) temp = 0;
// round lsb (2^(LUX_SCALE-1))
temp += (1 << (TSL2561_LUX_LUXSCALE-1));
// strip off fractional portion
uint32_t lux = temp >> TSL2561_LUX_LUXSCALE;
// Signal I2C had no errors
return lux;
}
uint32_t TSL2561::getFullLuminosity (void)
{
if (!_initialized) begin();
// Enable the device by setting the control bit to 0x03
enable();
// Wait x ms for ADC to complete
switch (_integration)
{
case TSL2561_INTEGRATIONTIME_13MS:
delay(14);
break;
case TSL2561_INTEGRATIONTIME_101MS:
delay(102);
break;
default:
delay(400);
break;
}
uint32_t x;
x = read16(TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN1_LOW);
x <<= 16;
x |= read16(TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN0_LOW);
disable();
return x;
}
uint16_t TSL2561::getLuminosity (uint8_t channel) {
uint32_t x = getFullLuminosity();
if (channel == 0) {
// Reads two byte value from channel 0 (visible + infrared)
return (x & 0xFFFF);
} else if (channel == 1) {
// Reads two byte value from channel 1 (infrared)
return (x >> 16);
} else if (channel == 2) {
// Reads all and subtracts out just the visible!
return ( (x & 0xFFFF) - (x >> 16));
}
// unknown channel!
return 0;
}
uint16_t TSL2561::read16(uint8_t reg)
{
uint16_t x; uint16_t t;
Wire.beginTransmission(_addr);
#if ARDUINO >= 100
Wire.write(reg);
#else
Wire.send(reg);
#endif
Wire.endTransmission();
Wire.requestFrom(_addr, 2);
#if ARDUINO >= 100
t = Wire.read();
x = Wire.read();
#else
t = Wire.receive();
x = Wire.receive();
#endif
x <<= 8;
x |= t;
return x;
}
void TSL2561::write8 (uint8_t reg, uint8_t value)
{
Wire.beginTransmission(_addr);
#if ARDUINO >= 100
Wire.write(reg);
Wire.write(value);
#else
Wire.send(reg);
Wire.send(value);
#endif
Wire.endTransmission();
}

View File

@ -0,0 +1,184 @@
/**************************************************************************/
/*!
@file tsl2561.h
@author K. Townsend (microBuilder.eu)
@section LICENSE
Software License Agreement (BSD License)
Copyright (c) 2010, microBuilder SARL
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**************************************************************************/
#ifndef _TSL2561_H_
#define _TSL2561_H_
#if ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
#include <Wire.h>
#define TSL2561_VISIBLE 2 // channel 0 - channel 1
#define TSL2561_INFRARED 1 // channel 1
#define TSL2561_FULLSPECTRUM 0 // channel 0
// 3 i2c address options!
#define TSL2561_ADDR_LOW 0x29
#define TSL2561_ADDR_FLOAT 0x39
#define TSL2561_ADDR_HIGH 0x49
// Lux calculations differ slightly for CS package
//#define TSL2561_PACKAGE_CS
#define TSL2561_PACKAGE_T_FN_CL
#define TSL2561_READBIT (0x01)
#define TSL2561_COMMAND_BIT (0x80) // Must be 1
#define TSL2561_CLEAR_BIT (0x40) // Clears any pending interrupt (write 1 to clear)
#define TSL2561_WORD_BIT (0x20) // 1 = read/write word (rather than byte)
#define TSL2561_BLOCK_BIT (0x10) // 1 = using block read/write
#define TSL2561_CONTROL_POWERON (0x03)
#define TSL2561_CONTROL_POWEROFF (0x00)
#define TSL2561_LUX_LUXSCALE (14) // Scale by 2^14
#define TSL2561_LUX_RATIOSCALE (9) // Scale ratio by 2^9
#define TSL2561_LUX_CHSCALE (10) // Scale channel values by 2^10
#define TSL2561_LUX_CHSCALE_TINT0 (0x7517) // 322/11 * 2^TSL2561_LUX_CHSCALE
#define TSL2561_LUX_CHSCALE_TINT1 (0x0FE7) // 322/81 * 2^TSL2561_LUX_CHSCALE
// T, FN and CL package values
#define TSL2561_LUX_K1T (0x0040) // 0.125 * 2^RATIO_SCALE
#define TSL2561_LUX_B1T (0x01f2) // 0.0304 * 2^LUX_SCALE
#define TSL2561_LUX_M1T (0x01be) // 0.0272 * 2^LUX_SCALE
#define TSL2561_LUX_K2T (0x0080) // 0.250 * 2^RATIO_SCALE
#define TSL2561_LUX_B2T (0x0214) // 0.0325 * 2^LUX_SCALE
#define TSL2561_LUX_M2T (0x02d1) // 0.0440 * 2^LUX_SCALE
#define TSL2561_LUX_K3T (0x00c0) // 0.375 * 2^RATIO_SCALE
#define TSL2561_LUX_B3T (0x023f) // 0.0351 * 2^LUX_SCALE
#define TSL2561_LUX_M3T (0x037b) // 0.0544 * 2^LUX_SCALE
#define TSL2561_LUX_K4T (0x0100) // 0.50 * 2^RATIO_SCALE
#define TSL2561_LUX_B4T (0x0270) // 0.0381 * 2^LUX_SCALE
#define TSL2561_LUX_M4T (0x03fe) // 0.0624 * 2^LUX_SCALE
#define TSL2561_LUX_K5T (0x0138) // 0.61 * 2^RATIO_SCALE
#define TSL2561_LUX_B5T (0x016f) // 0.0224 * 2^LUX_SCALE
#define TSL2561_LUX_M5T (0x01fc) // 0.0310 * 2^LUX_SCALE
#define TSL2561_LUX_K6T (0x019a) // 0.80 * 2^RATIO_SCALE
#define TSL2561_LUX_B6T (0x00d2) // 0.0128 * 2^LUX_SCALE
#define TSL2561_LUX_M6T (0x00fb) // 0.0153 * 2^LUX_SCALE
#define TSL2561_LUX_K7T (0x029a) // 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B7T (0x0018) // 0.00146 * 2^LUX_SCALE
#define TSL2561_LUX_M7T (0x0012) // 0.00112 * 2^LUX_SCALE
#define TSL2561_LUX_K8T (0x029a) // 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B8T (0x0000) // 0.000 * 2^LUX_SCALE
#define TSL2561_LUX_M8T (0x0000) // 0.000 * 2^LUX_SCALE
// CS package values
#define TSL2561_LUX_K1C (0x0043) // 0.130 * 2^RATIO_SCALE
#define TSL2561_LUX_B1C (0x0204) // 0.0315 * 2^LUX_SCALE
#define TSL2561_LUX_M1C (0x01ad) // 0.0262 * 2^LUX_SCALE
#define TSL2561_LUX_K2C (0x0085) // 0.260 * 2^RATIO_SCALE
#define TSL2561_LUX_B2C (0x0228) // 0.0337 * 2^LUX_SCALE
#define TSL2561_LUX_M2C (0x02c1) // 0.0430 * 2^LUX_SCALE
#define TSL2561_LUX_K3C (0x00c8) // 0.390 * 2^RATIO_SCALE
#define TSL2561_LUX_B3C (0x0253) // 0.0363 * 2^LUX_SCALE
#define TSL2561_LUX_M3C (0x0363) // 0.0529 * 2^LUX_SCALE
#define TSL2561_LUX_K4C (0x010a) // 0.520 * 2^RATIO_SCALE
#define TSL2561_LUX_B4C (0x0282) // 0.0392 * 2^LUX_SCALE
#define TSL2561_LUX_M4C (0x03df) // 0.0605 * 2^LUX_SCALE
#define TSL2561_LUX_K5C (0x014d) // 0.65 * 2^RATIO_SCALE
#define TSL2561_LUX_B5C (0x0177) // 0.0229 * 2^LUX_SCALE
#define TSL2561_LUX_M5C (0x01dd) // 0.0291 * 2^LUX_SCALE
#define TSL2561_LUX_K6C (0x019a) // 0.80 * 2^RATIO_SCALE
#define TSL2561_LUX_B6C (0x0101) // 0.0157 * 2^LUX_SCALE
#define TSL2561_LUX_M6C (0x0127) // 0.0180 * 2^LUX_SCALE
#define TSL2561_LUX_K7C (0x029a) // 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B7C (0x0037) // 0.00338 * 2^LUX_SCALE
#define TSL2561_LUX_M7C (0x002b) // 0.00260 * 2^LUX_SCALE
#define TSL2561_LUX_K8C (0x029a) // 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B8C (0x0000) // 0.000 * 2^LUX_SCALE
#define TSL2561_LUX_M8C (0x0000) // 0.000 * 2^LUX_SCALE
enum
{
TSL2561_REGISTER_CONTROL = 0x00,
TSL2561_REGISTER_TIMING = 0x01,
TSL2561_REGISTER_THRESHHOLDL_LOW = 0x02,
TSL2561_REGISTER_THRESHHOLDL_HIGH = 0x03,
TSL2561_REGISTER_THRESHHOLDH_LOW = 0x04,
TSL2561_REGISTER_THRESHHOLDH_HIGH = 0x05,
TSL2561_REGISTER_INTERRUPT = 0x06,
TSL2561_REGISTER_CRC = 0x08,
TSL2561_REGISTER_ID = 0x0A,
TSL2561_REGISTER_CHAN0_LOW = 0x0C,
TSL2561_REGISTER_CHAN0_HIGH = 0x0D,
TSL2561_REGISTER_CHAN1_LOW = 0x0E,
TSL2561_REGISTER_CHAN1_HIGH = 0x0F
};
typedef enum
{
TSL2561_INTEGRATIONTIME_13MS = 0x00, // 13.7ms
TSL2561_INTEGRATIONTIME_101MS = 0x01, // 101ms
TSL2561_INTEGRATIONTIME_402MS = 0x02 // 402ms
}
tsl2561IntegrationTime_t;
typedef enum
{
TSL2561_GAIN_0X = 0x00, // No gain
TSL2561_GAIN_16X = 0x10, // 16x gain
}
tsl2561Gain_t;
class TSL2561 {
public:
TSL2561(uint8_t addr);
boolean begin(void);
void enable(void);
void disable(void);
void write8(uint8_t r, uint8_t v);
uint16_t read16(uint8_t reg);
uint32_t calculateLux(uint16_t ch0, uint16_t ch1);
void setTiming(tsl2561IntegrationTime_t integration);
void setGain(tsl2561Gain_t gain);
uint16_t getLuminosity (uint8_t channel);
uint32_t getFullLuminosity ();
private:
int8_t _addr;
tsl2561IntegrationTime_t _integration;
tsl2561Gain_t _gain;
boolean _initialized;
};
#endif

File diff suppressed because it is too large Load Diff