Add BA3 formula sheets

This commit is contained in:
Nathanaël Restori 2016-02-14 17:04:17 +01:00
parent bdd75583c8
commit 03743ba766
4 changed files with 1399 additions and 0 deletions

View File

@ -0,0 +1,13 @@
\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\input{../Common.tex}
\geometry{top=6.5pt, bottom=6pt, left=6.5pt, right=6pt}
\begin{document}
% \pagestyle{plain}
\includepdf[width=0.5\textwidth,pages={-},nup=2x2]{BA3 - Analyse numérique.pdf}
\end{document}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,327 @@
\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\input{../Common.tex}
\begin{document}
\begin{tabularx}{\textwidth}{ |X|X| }
\hline
\textbf{Équations de Maxwell} \newline
$ \nabla \bullet \vec{E} = \frac{\rho}{\varepsilon_0} \hspace{15mm} \nabla \times \vec{E} = - \frac{\partial \vec{B}}{\partial t} $ \newline
$ \nabla \bullet \vec{B} = 0 \hspace{17mm} \nabla \times \vec{B} = \mu_0 \cdot \vec{j} + \frac{1}{c^2} \cdot \frac{\partial \vec{E}}{\partial t} $ \newline
&
\textbf{Formes intégrales} \newline
$ \oiint_\Sigma \vec{E} \bullet \dif\vec{\sigma} = \frac{Q_{int}}{\varepsilon_0} \hspace{25mm} = \Phi_E $ \hfill Th. de Gauss \newline
$ \oint_\Gamma \vec{B} \bullet \dif\vec{l} = \mu_0 \cdot I + \frac{1}{c^2} \cdot \frac{\dif \Phi_E}{\dif t} \hspace{15mm} I_d = \varepsilon_0 \cdot \frac{\dif \Phi_E}{\dif t} $ \hfill Th. d'Ampère \newline
$ V = \oint_\Gamma \vec{E} \bullet \dif\vec{l} = - \frac{\dif \Phi_M}{\dif t} $ \hfill Induction \newline
\\ \hline
\end{tabularx}
\offinterlineskip
\begin{tabularx}{\textwidth}{ |X| }
\textbf{Électrostatique} \newline
$ \vec{E} = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \left( \sum q_i \cdot \frac{\vec{r}-\vec{r_i}}{|\vec{r}-\vec{r_i}|^3} + \int_\Gamma \frac{\lambda(\vec{r}') \cdot (\vec{r}-\vec{r}')}{|\vec{r}-\vec{r}'|^3} \cdot \dif l + \iint_\Sigma \frac{\sigma(\vec{r}') \cdot (\vec{r}-\vec{r}')}{|\vec{r}-\vec{r}'|^3} \cdot \dif\sigma + \iiint_V \frac{\rho(\vec{r}') \cdot (\vec{r}-\vec{r}')}{|\vec{r}-\vec{r}'|^3} \cdot \dif V \right) $ \newline
$ V = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \left( \sum q_i \cdot \frac{1}{|\vec{r}-\vec{r_i}|} + \int_\Gamma \frac{\lambda(\vec{r}')}{|\vec{r}-\vec{r}'|} \cdot \dif l + \iint_\Sigma \frac{\sigma(\vec{r}')}{|\vec{r}-\vec{r}'|} \cdot \dif\sigma + \iiint_V \frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} \cdot \dif V \right) $ \newline
\\ \hline
\textbf{Magnétostatique} \newline
$ \vec{B} = \frac{\mu_0 \cdot I}{4 \cdot \pi} \oint_\Gamma \frac{\vec{u}_t \times \vec{u}_r}{r^2} \cdot \dif l = \frac{\mu_0}{4 \cdot \pi} \iiint_V \frac{\vec{j}(\vec{x}') \times \vec{u}_r}{r^2} \cdot \dif^3 x' $ \hfill Loi de Biot-Savart \newline
\\ \hline
\end{tabularx}
\offinterlineskip
\begin{tabularx}{\textwidth}{ |X|X| }
\textbf{Dipôle électrique} \newline
$ \vec{p} = q \cdot \vec{r}_+ - q \cdot \vec{r}_- = q \cdot \vec{a} $ \newline
$ \vec{\tau} = \vec{p} \times \vec{E}_{ext} $ \newline
$ U_{\acute el} = - \vec{p} \bullet \vec{E}_{ext} $ \newline
$ E_r = - \frac{\partial V}{\partial r} = \frac{2 \cdot p \cdot \cos \theta}{4 \cdot \pi \cdot \varepsilon_0 \cdot r^3} $ \newline
$ E_\theta = - \frac{1}{r} \frac{\partial V}{\partial \theta} = \frac{p \cdot \sin \theta}{4 \cdot \pi \cdot \varepsilon_0 \cdot r^3} $ \newline
&
\textbf{Dipôle magnétique} \newline
$ \vec{M} = I \cdot \vec{S} $ \newline
$ \vec{\tau} = \vec{M} \times \vec{B}_{ext} $ \newline
$ U_{mag} = - \vec{M} \bullet \vec{B}_{ext} $ \newline
\\ \hline
\textbf{Polarisation} \newline
$ \sigma_P = \vec{P} \bullet \vec{e}_n $ \newline
$ <\vec{E}> = \frac{E_{ext}}{\varepsilon_r} $ \newline
$ \vec{P} = n \cdot <\vec{p}> $ \newline
&
\textbf{Aimantation} \newline
$ j_{lie} = \vec{M} \bullet \vec{e}_n $ \newline
$ <\vec{B}> = \mu_r \cdot B_{ext} $ \newline
\\ \hline
\textbf{Champ électrique D} \newline
$ \vec{D} = \varepsilon_0 \cdot \vec{E} + \vec{P} $ \newline
$ \nabla \bullet \vec{D} = \rho_{libre} $ \newline
$ \vec{D} = \varepsilon_0 \cdot \vec{E} + \vec{P} = \varepsilon_0 \cdot (1 + \chi) \cdot \vec{E} = \varepsilon \cdot \vec{E}$ \newline
&
\textbf{Champ magnétisant H} \newline
$ \vec{H} = \frac{1}{\mu_0} \cdot \vec{B} - \vec{M} $ \newline
$ \nabla \times \vec{H} = \vec{j}_{libre} $ \newline
$ \vec{B} = \mu_0 \cdot (\vec{H} + \vec{M}) = \mu_0 \cdot (1 + \chi) \cdot \vec{H} = \mu \cdot \vec{H}$ \newline
\\ \hline
\textbf{Conditions au bord} \newline
$ E_{1t} = E_{2t} $ \newline
$ D_{1n} = D_{2n} \Rightarrow \varepsilon_{r1} \cdot E_{1n} = \varepsilon_{r2} \cdot E_{2n} $ \hfill Isolant-Isolant \newline
$ D_{1n} = \sigma_{libre} \Rightarrow E_{1n} = \frac{\sigma_{libre}}{\varepsilon_0 \cdot \varepsilon_{r1}} $ \hfill Isolant-Métal \newline
&
\textbf{Conditions au bord} \newline
$ H_{1t} = H_{2t} \Rightarrow \frac{B_{1t}}{\mu_{r1}} = \frac{B_{2t}}{\mu_{r2}} $ \newline
$ B_{1n} = B_{2n} $ \newline
\\ \hline
\textbf{Électrostatique} \newline
$ \vec{F} = q \cdot (\vec{E} + \vec{v} \times \vec{B}) $ \hfill Force de Lorentz \newline
$ \vec{E} = - \nabla V $ \newline
$ V(\vec{r}) = V(\vec{r_0}) - \int_{\vec{r_0}}^{\vec{r}} \vec{E} \bullet \dif\vec{l} $ \newline
$ \nabla^2 V(\vec{r})= - \frac{\rho}{\varepsilon_0} $ \hfill Équation de Poisson \newline
$ W_{AB} = \int_{\vec{r}_A}^{\vec{r}_B} q \cdot \vec{E} \cdot \dif \vec{l} = q \cdot V(\vec{r}_A) - q \cdot V(\vec{r}_B) $ \newline
$ U_E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{1}{2} \cdot \sum_{i=1}^N \sum_{j=1,j \neq i}^N \frac{q_i \cdot q_j}{|\vec{r}_i - \vec{r}_j|} $ \hfill Distribution discrète \newline
$ U_E = \frac{1}{2} \cdot \iiint_V \rho(\vec{r}) \cdot V(\vec{r}) \cdot \dif V $ \hfill Distribution continue \newline
$ \vec{j} = n \cdot q \cdot \vec{v} = \rho \cdot \vec{v} $ \hfill Densité de courant \newline
$ \vec{j} = \sigma \cdot \vec{E} $ \hfill $ \sigma $ conductivité \newline
$ \vec{E} = 0 \text{, } V = cte $ \hfill Dans un conducteur \newline
&
\textbf{Magnétostatique} \newline
$ r = \frac{m \cdot v}{q \cdot B_0} $ \hfill Rayon de Larmor \newline
$ \vec{\omega} = - \frac{q}{m} \cdot \vec{B_0} $ \hfill Fréquence de cyclotron \newline
$ \vec{F} = I \cdot \int_\Gamma \dif\vec{l} \times \vec{B} $ \hfill Force de Laplace \newline
$ \frac{F}{L} = \frac{\mu_0 \cdot I_1 \cdot I_2}{2 \cdot \pi \cdot d} $ \hfill Force entre deux conducteurs \newline
$ B = \mu_0 \cdot I \cdot n $ \hfill Champ dans une bobine \newline
$ \vec{B}(\vec{x}) = \frac{1}{c^2} \cdot \vec{v} \times \vec{E}(\vec{x}) $ \hfill Charge en mouvement \newline
$ F_{\acute el} = \gamma \cdot F_{Lorentz} $ \hfill Effet relatif \newline
$ \nabla^2 \vec{A} = - \mu_0 \cdot \vec{j} $ \hfill Potentiel Vecteur \newline
\\ \hline
\textbf{Condensateur} \newline
$ Q = C \cdot \Delta V $ \newline
$ U = \frac{1}{2} \cdot C \cdot V^2 = \frac{Q^2}{2 \cdot C} $ \newline
$ V = \frac{1}{C} \cdot \int I \cdot \dif t $ \newline
$ C = \frac{\varepsilon_0 \cdot A}{d} $ \hfill Pour un condensateur plan \newline
$ C = 4 \cdot \pi \cdot \varepsilon_0 \cdot \frac{R_b \cdot R_a}{R_b - R_a} $ \hfill Pour un condensateur sphère \newline
&
\textbf{Inductance} \newline
$ \Phi_M = L \cdot I $ \newline
$ U = \frac{1}{2} \cdot L \cdot I^2 $ \newline
$ V = L \cdot \frac{\dif I}{\dif t} $ \newline
\\ \hline
\textbf{Ondes} \newline
$ \xi(x,t) = f(x - v \cdot t) + g(x + v \cdot t) $ \newline
$ \xi(x,t) = \xi_0 \cdot \sin(k \cdot x - \omega \cdot t) $ \newline
$ v = \frac{\omega}{k} = \lambda \cdot \nu $ \newline
$ v_g = v + k \cdot \frac{\dif v}{\dif t} $ \newline
$ v_{tr} = - \omega \cdot \xi_0 \cdot \cos(k \cdot x - \omega \cdot t) $ \newline
$ k \cdot \lambda = 2 \cdot \pi $ \newline
$ \frac{\partial^2 \xi}{\partial t^2} = v^2 \cdot \nabla^2 \xi $ \hfill Équation d'Alembert \newline
$ \nu' = \left( \frac{v - v_O}{v - v_S} \right) \cdot \nu $ \hfill Effet Doppler \newline
$ \nu' = \left( \frac{\sqrt{1 - v_R/c}}{\sqrt{1 + v_R/c}} \right) \cdot \nu $ \hfill Effet Doppler (lumière) \newline
$ I = \frac{P}{A} = \frac{1}{A} \cdot \frac{\dif W}{\dif t} \propto \xi^2 $ \newline
$ n = 10 \cdot \log_{10} \frac{I}{I_0} $ \newline
&
\textbf{Électromagnétisme} \newline
$ E = c \cdot B $ \newline
$ c^2 = \frac{1}{\mu_0 \cdot \varepsilon_0} $ \newline
$ I = S = c \cdot u_{EM} $ \newline
$ u_E = \frac{1}{2} \cdot \vec{E} \bullet \vec{D} = \frac{1}{2} \cdot \varepsilon_0 \cdot |\vec{E}|^2 $ \newline
$ u_M = \frac{1}{2} \cdot \vec{B} \bullet \vec{H} = \frac{1}{2 \cdot \mu_0} \cdot |\vec{B}|^2 $ \newline
$ u_E = u_M = \frac{1}{2} \cdot u_{EM} $ \newline
$ \vec{S} = \frac{1}{\mu_0} \cdot \vec{E} \times \vec{B} $ \newline
$ \frac{\partial u_{EM}}{\partial t} + \nabla \bullet \vec{S} = 0 $ \hfill Théorème de Poynting \newline
$ P = \frac{I}{c} $ \hfill Pression de radiation (absorbtion) \newline
$ P = \frac{2 \cdot I}{c} $ \hfill Pression de radiation (réflexion) \newline
$ \vec{p} = \varepsilon_0 \cdot \vec{E} \times \vec{B} = \frac{\vec{S}}{c} $ \newline
\\ \hline
\end{tabularx}
\offinterlineskip
\begin{tabularx}{\textwidth}{ |X|X| }
\hline
\textbf{Onde stationnaire} \newline
$ \xi = 2 \cdot \xi_0 \cdot \sin(k \cdot x) \cdot \cos(\omega \cdot t) $ \newline
$ L = m \cdot \frac{\lambda}{2} $ \hfill Corde fixée aux 2 ext. / Tuyeau ouvert \newline
$ L = (2 \cdot m + 1) \cdot \frac{\lambda}{4} $ \hfill Corde fixée à 1 ext. / Tuyeau fermé \newline
$ k \cdot x = m \cdot \pi $ \hfill Noeud ou Ventre \newline
$ k \cdot x = (m + \frac{1}{2}) \cdot \pi $ \hfill Ventre ou Noeud \newline
&
\textbf{Interférences} \newline
$ \xi_0^2 = \xi_{01}^2 + \xi_{02}^2 + 2 \cdot \xi_{01} \cdot \xi_{02} \cdot \cos \delta $ \newline
$ \xi_0^2 = 4 \cdot \xi_{01}^2 \cdot \cos^2 \frac{\delta}{2} $ \hfill Même amplitude \newline
$ \xi(t) = \xi_0 \cdot \cos(\omega \cdot t - k\cdot r_1 + \delta/2) $ \hfill Même amplitude \newline
$ I = I_0 \cdot \cos^2 \frac{\delta}{2} $ \hfill Même amplitude \newline
$ \delta = k \cdot \Delta r = k \cdot a \cdot \sin \theta $ \newline
$ \delta = 2 \cdot m \cdot \pi $ \hfill Max \newline
$ \delta = (2 \cdot m + 1) \cdot \pi $ \hfill Min \newline
\\ \hline
\textbf{Diffraction} \newline
$ I = I_0 \cdot \left( \frac{\sin(\pi \cdot b \cdot \sin \theta / \lambda)}{\pi \cdot b \cdot \sin \theta / \lambda} \right)^2 $ \newline
$ b \cdot \sin \theta = \pm m \cdot \lambda \hspace{15mm} (m \neq 0) $ \hfill Zéro \newline
$ b \cdot \sin \theta = \pm (m + \frac{1}{2}) \cdot \lambda \hspace{5mm} (m \neq 0) $ \hfill Max \newline
$ \theta \geqslant \frac{\lambda}{b} $ \hfill Critère de Rayleigh (fente) \newline
$ \theta \geqslant 1.22 \cdot \frac{\lambda}{D} $ \hfill Critère de Rayleigh (ouv. circ.) \newline
$ 2 \cdot d \cdot \sin \theta = m \cdot \lambda $ \hfill Condition de Bragg \newline
&
\textbf{Optique} \newline
$ n_i \cdot \sin \theta_i = n_r \cdot \sin \theta_r $ \hfill Loi de Snell-Descartes \newline
$ \sin \theta_i > \frac{n_r}{n_i} $ \hfill Réflexion totale \newline
$ v = \frac{c}{n} $ \newline
$ \lambda_n = \frac{\lambda}{n} $ \newline
$ k_n = n \cdot k $ \newline
$ n = \sqrt{\varepsilon_r \cdot \mu_r} \sim \sqrt{\varepsilon_r} $ \newline
\\ \hline
\textbf{Polarisation} \newline
$ \tan(\theta) = \frac{n_r}{n_i} $ \hfill Angle de Brewster \newline
Angle de Brewster \hfill $ \Rightarrow $ \hfill $ \pi $ 100\% transmis et 0\% réfléchi \newline
$ I = I_m \cdot \cos^2 \theta $ \hfill Loi de Malus \newline
\includegraphics[width=0.48\textwidth,keepaspectratio=true]{./Polarisation.png} \newline
Polarisation $ \sigma $ \hfill Polarisation $ \pi $ \newline
&
\textbf{Interférences à N sources} \newline
$ I = I_0 \cdot \left( \frac{\sin(N \cdot \pi \cdot a \cdot \sin \theta / \lambda)}{\sin(\pi \cdot a \cdot \sin \theta / \lambda)} \right) $ \newline
$ a \cdot \sin \theta = m \cdot \lambda, \hspace{1em} I = N^2 \cdot I_0 $ \hfill Max \newline
$ a \cdot \sin \theta = \frac{m'}{N} \cdot \lambda, \hspace{1em} \frac{m'}{N} \neq m $ \hfill Min \newline
\\ \hline
\textbf{Fluides} \newline
$ \dif\vec{F} = - P \cdot \dif\vec{\sigma} $ \newline
$ \frac{\partial\rho}{\partial t} + \nabla \bullet (\rho \cdot \vec{v}) = 0 $ \hfill Éq. de continuité \newline
$ \frac{1}{2} \cdot \rho \cdot v^2 + \rho \cdot g \cdot z + P = const $ \hfill Éq. de Bernoulli \newline
$ - \nabla P + \rho \cdot \vec{g} + \eta \cdot \nabla^2 \vec{v} = \rho \cdot (\frac{\partial \vec{v}}{\partial t} + (\vec{v} \bullet \nabla)\vec{v}) $ \hfill Éq. d'Euler \newline
$ \dif \vec{x} \parallel \vec{v} \Leftrightarrow \frac{\dif x}{\dif y} = \frac{v_x}{v_y} $ \hfill Lignes de courant \newline
&
\textbf{Fluides II} \newline
$ \Delta P = \frac{8 \cdot \eta \cdot L \cdot D}{\pi \cdot R^4} $ \hfill Loi de Poiseuille \newline
$ v(r) = \frac{\Delta P}{4 \cdot \eta \cdot L} \cdot (R^2 - r^2) $ \hfill Profil de vitesse de Poiseuille \newline
$ \vec{F}_{visc} = \eta \cdot \frac{S \cdot (\vec{v}_{sup} - \vec{v}_{inf})}{d} $ \newline
$ \dif \vec{F}_{visc} = \eta \cdot \nabla^2 \vec{v} \cdot \dif V $ \newline
$ \frac{\dif E}{\dif t} = -\Phi_{en} + \frac{\dif W}{\dif t} $ \newline
\\ \hline
\textbf{Opérateurs en coordonées cylindriques} \newline
$ \nabla U =
\begin{pmatrix}
\frac{\partial U}{\partial \rho} \\
\frac{1}{\rho} \frac{\partial U}{\partial \phi} \\
\frac{\partial U}{\partial z} \\
\end{pmatrix}
$ \newline
$ \nabla \bullet \vec{A}
= \frac{1}{\rho} \frac{\partial (\rho A_\rho)}{\partial \rho}
+ \frac{1}{\rho} \frac{\partial A_\phi}{\partial \phi}
+ \frac{\partial A_z}{\partial z}
$ \newline
$ \nabla \times \vec{A} =
\begin{pmatrix}
\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \\
\frac{\partial A_\rho}{\partial z} - \frac{\partial A_z}{\partial \rho} \\
\frac{1}{\rho} \frac{\partial (\rho A_\phi)}{\partial \rho} - \frac{1}{\rho} \frac{\partial A_\rho}{\partial \phi} \\
\end{pmatrix}
$ \newline
$ \nabla^2 U
= \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial U}{\partial \rho} \right)
+ \frac{1}{\rho^2} \frac{\partial^2 U}{\partial \phi^2}
+ \frac{\partial^2 U}{\partial z^2}
= \frac{\partial^2 U}{\partial \rho^2}
+ \frac{1}{\rho} \frac{\partial U}{\partial \rho}
+ \frac{1}{\rho^2} \frac{\partial^2 U}{\partial \phi^2}
+ \frac{\partial^2 U}{\partial z^2}
$ \newline
$ \vec{\nabla}^2 \vec{A} =
\begin{pmatrix}
\nabla^2 A_\rho - \frac{A_\rho}{\rho^2} - \frac{2}{\rho^2} \frac{\partial A_\phi}{\partial \phi} \\
\nabla^2 A_\phi - \frac{A_\phi}{\rho^2} + \frac{2}{\rho^2} \frac{\partial A_\rho}{\partial \phi} \\
\nabla^2 A_z \\
\end{pmatrix}
$ \newline
&
\textbf{Opérateurs en coordonées sphériques} \newline
$ \nabla U =
\begin{pmatrix}
\frac{\partial U}{\partial r} \\
\frac{1}{r} \frac{\partial U}{\partial \theta} \\
\frac{1}{r \sin \theta} \frac{\partial U}{\partial \phi} \\
\end{pmatrix}
$ \newline
$ \nabla \bullet \vec{A}
= \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r}
+ \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta}
+ \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}
$ \newline
$ \nabla \times \vec{A} =
\begin{pmatrix}
\frac{1}{r \sin \theta} \left[ \frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi} \right] \\
\frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial (r A_\phi)}{\partial r} \\
\frac{1}{r} \left[ \frac{\partial (r A_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right] \\
\end{pmatrix}
$ \newline
$ \nabla^2 U
= \frac{1}{r^2 \sin \theta} \left[ \frac{\partial}{\partial r} \left( r^2 \sin \theta \frac{\partial U}{\partial r} \right)
+ \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial U}{\partial \theta} \right)
+ \frac{\partial}{\partial \phi} \left( \frac{1}{\sin \theta} \frac{\partial U}{\partial \phi} \right) \right]
$ \newline
$ \nabla^2 U
= \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial U}{\partial r} \right)
+ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial U}{\partial \theta} \right)
+ \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 U}{\partial \phi^2}
$ \newline
$ \nabla^2 U
= \frac{\partial^2 U}{\partial r^2}
+ \frac{2}{r} \frac{\partial U}{\partial r}
+ \frac{1}{r^2} \frac{\partial^2 U}{\partial \theta^2}
+ \frac{1}{r^2} \cot \theta \frac{\partial U}{\partial \theta}
+ \frac{1}{r^2 \sin^2 \theta}\frac{\partial^2 U}{\partial \phi^2}
$ \newline
$ \vec{\nabla}^2 \vec{A} =
\begin{pmatrix}
\nabla^2 A_r - \frac{2}{r^2} \left( A_r + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{\sin \theta} \frac{\partial A_\phi}{\partial \phi} \right) \\
\nabla^2 A_\theta + \frac{2}{r^2} \left( \frac{\partial A_r}{\partial \theta} - \frac{A_\theta}{2 \sin^2 \theta} - \frac{\cot \theta}{\sin \theta} \frac{\partial A_\phi}{\partial \phi} \right) \\
\nabla^2 A_\phi + \frac{2}{r^2 \sin \theta} \left( \frac{\partial A_r}{\partial \phi} + \cot \theta \frac{\partial A_\theta}{\partial \phi} - \frac{A_\phi}{2 \sin \theta} \right) \\
\end{pmatrix}
$ \newline
\\ \hline
\textbf{Théorèmes} \newline
$ \iiint_V \nabla f \cdot \dif V = \oiint_\Sigma f \cdot \dif\vec{\sigma} $ \hfill Th. du Gradient \newline
$ \iiint_V \nabla \bullet \vec{F} \cdot \dif V = \oiint_\Sigma \vec{F} \bullet \dif\vec{\sigma} $ \hfill Th. de la Divergence \newline
$ \iint_\Sigma (\nabla \times \vec{F}) \bullet \dif\vec{\sigma} = \oint_\Gamma \vec{F} \bullet \dif\vec{l} $ \hfill Th. de Stokes \newline
$ \frac{\dif F}{\dif t}
= \frac{\partial F}{\partial t}
+ \frac{\partial F}{\partial x} \cdot \frac{\dif x}{\dif t}
+ \frac{\partial F}{\partial y} \cdot \frac{\dif y}{\dif t}
+ \frac{\partial F}{\partial z} \cdot \frac{\dif z}{\dif t}
= \frac{\partial F}{\partial t} + (\vec{v} \bullet \nabla) F $ \newline
&
\textbf{} \newline
\\ \hline
\end{tabularx}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 556 KiB