Initial commit

This commit is contained in:
Nathanaël Restori 2015-10-03 14:54:32 +02:00
commit 2f817d6698
19 changed files with 808 additions and 0 deletions

136
analyse-I.tex Normal file
View File

@ -0,0 +1,136 @@
\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\usepackage{xltxtra}
\usepackage{pbox}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{tabularx}
\usepackage[top=13pt, bottom=12pt, left=13pt, right=12pt]{geometry}
% \setromanfont[Mapping=tex-text]{Linux Libertine O}
% \setsansfont[Mapping=tex-text]{DejaVu Sans}
% \setmonofont[Mapping=tex-text]{DejaVu Sans Mono}
\title{}
\author{}
\date{}
\let\oldcdot\cdot
\let\oldbullet\bullet
\let\oldvec\vec
\let\olddot\dot
\let\oldddot\ddot
% \renewcommand{\cdot}{ }
\renewcommand{\bullet}{\circ}
% \renewcommand{\vec}{\mathbf}
% \renewcommand{\dot}[1]{\frac{\mathrm{d}#1}{\mathrm{d}t}}
% \renewcommand{\ddot}[1]{\frac{\mathrm{d^2}#1}{\mathrm{d}t^2}}
\newcommand{\ccdot}{ }
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt}
\begin{document}
% \maketitle
\begin{tabularx}{\textwidth}{ |X|X| }
\hline
\textbf{Polynômes de Taylor} \newline
$\begin{aligned}
e^x &= \sum\limits_{k=0}^\infty \frac{x^k}{k!}, &x \in \mathbb{R} \\
\sinh(x) &= \sum\limits_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!}, &x \in \mathbb{R} \\
\cosh(x) &= \sum\limits_{k=0}^\infty \frac{x^{2k}}{(2k)!}, &x \in \mathbb{R} \\
\sin(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}, &x \in \mathbb{R} \\
\cos(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k}}{(2k)!}, &x \in \mathbb{R} \\
\ln(1+x) &= \sum\limits_{k=0}^\infty (-1)^{k+1} \frac{x^k}{k}, &x \in {]-1,1[} \\
\frac{1}{1+x} &= \sum\limits_{k=0}^\infty (-1)^{k} x^k, &x \in {]-1,1[} \\
\arctan(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1}, &x \in {]-1,1[} \\
\end{aligned}$ \newline
&
\textbf{Intégrales} \newline
$\begin{aligned}
&\int \frac{f'(x)}{f(x)}\mathrm{d}x &&= \ln \left|f(x)\right| + C \\
&\int \frac{f'(x)}{1+f^2(x)}\mathrm{d}x &&= \arctan \left[f(x)\right] + C \\
&\int \left[f(x)\right]^\alpha f'(x) \mathrm{d}x &&= \frac{\left[f(x)\right]^{\alpha+1}}{\alpha + 1} + C, &\forall \alpha \neq -1 \\
&\int e^{f(x)} f'(x) \mathrm{d}x &&= e^{f(x)} + C \\
&\int \frac{f'(x)}{\sqrt{1-f^2(x)}}\mathrm{d}x &&= \arcsin \left[f(x)\right] + C \\
\end{aligned}$ \newline
\\
\end{tabularx}
\offinterlineskip
\begin{tabularx}{\textwidth}{ |X|X|X| }
\hline
\textbf{Racine carrée complexe} \newline
$\begin{aligned}
w = u + vi, z = a + bi, z^2 = w \\
\begin{cases}
a^2 - b^2 &= u \\
2ab &= v \\
a^2 + b^2 &= \sqrt{u^2 + v^2} \\
\end{cases}
\end{aligned}$
&
\textbf{Somme géométrique} \newline
$\begin{aligned}
\sum\limits_{k=0}^n q^k &= \frac{1-q^{n+1}}{1-q} \\
\sum\limits_{k=0}^\infty q^k &= \frac{1}{1-q} \\
\end{aligned}$ \newline
&
\\ \hline
\textbf{Exponentielle} \newline
$\begin{aligned}
\cos(\theta) &= \frac{e^{i\theta} + e^{-i\theta}}{2} \\
\sin(\theta) &= \frac{e^{i\theta} - e^{-i\theta}}{2i} \\
\cosh(\theta) &= \frac{e^{\theta} + e^{-\theta}}{2} \\
\sinh(\theta) &= \frac{e^{\theta} - e^{-\theta}}{2} \\
\end{aligned}$ \newline
&
\textbf{Exponentielle} \newline
$\begin{aligned}
\lim_{n \to \infty} \left(1 + \frac{L}{n}\right)^n &= e^L \\
\text{De manière\ générale :} \\
\lim_{x \to \infty} f(x) &= +\infty \\
\lim_{x \to \infty} f(x)h(x) &= L \\
\lim_{x \to \infty} \left[1 + h(x)\right]^{f(x)} &= e^L \\
\end{aligned}$ \newline
&
\textbf{Trigonométrie} \newline
$\begin{aligned}
\cosh^2(x) - \sinh^2(x) = 1 \\
\cos^2(x) + \sin^2(x) = 1 \\
\sin(x+y) = \sin x \cos y + \cos x \sin y \\
\cos(x+y) = \cos x \cos y + \sin x \sin y \\
\sin x + \sin y = 2 \sin(\frac{x+y}{2})\cos(\frac{x-y}{2}) \\
\sin x - \sin y = 2 \sin(\frac{x-y}{2})\cos(\frac{x+y}{2}) \\
\cos x + \cos y = 2 \cos(\frac{x+y}{2})\cos(\frac{x-y}{2}) \\
\cos x - \cos y = -2 \sin(\frac{x+y}{2})\sin(\frac{x-y}{2}) \\
\end{aligned}$ \newline
\\ \hline
\multicolumn{2}{|X|}{
\textbf{Angles particuliers} \newline
$\begin{aligned}
\cos(0) = 1 \quad &\cos(\frac{\pi}{6}) = \frac{1}{2} \quad &\cos(\frac{\pi}{4}) = \frac{1}{2}\sqrt{2} \quad &\cos(\frac{\pi}{3}) = \frac{1}{2}\sqrt{3} \quad &\cos(\frac{\pi}{2}) = 0 \\
\sin(0) = 0 \quad &\sin(\frac{\pi}{6}) = \frac{1}{2}\sqrt{3} \quad &\sin(\frac{\pi}{4}) = \frac{1}{2}\sqrt{2} \quad &\sin(\frac{\pi}{3}) = \frac{1}{2} \quad &\sin(\frac{\pi}{2}) = 1 \\
\end{aligned}$ \newline
}
&
\\ \hline
\multicolumn{2}{|X|}{
\textbf{Convergence} \newline
$\begin{aligned}
&\int_M^\infty x^a e^{-bx} \mathrm{d}x &\text{ converge pour tout } a \in \mathbb{R} \text{ et tout } b > 0 \\
&\int_a^\infty \frac{1}{x^p} \mathrm{d}x &\text{ converge si et seulement si } p > 1 \quad (a > 0) \\
&\int_0^b \frac{1}{x^p} \mathrm{d}x &\text{ converge si et seulement si } p < 1 \\
\end{aligned}$ \newline
}
&
\\ \hline
\end{tabularx}
\end{document}

193
chimie.tex Normal file
View File

@ -0,0 +1,193 @@
\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\usepackage{xltxtra}
\usepackage{pbox}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{tabularx}
\usepackage{siunitx}
\usepackage[top=13pt, bottom=12pt, left=13pt, right=12pt]{geometry}
% \setromanfont[Mapping=tex-text]{Linux Libertine O}
% \setsansfont[Mapping=tex-text]{DejaVu Sans}
% \setmonofont[Mapping=tex-text]{DejaVu Sans Mono}
\title{}
\author{}
\date{}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt}
\begin{document}
% \maketitle
\begin{tabularx}{\textwidth}{ |X|X| }
\hline
\textbf{Bohr / Hydrogène} \newline
$ E_{photon} = h \cdot \nu $ \newline
$ E_{n} = \frac{-B}{n^2} $ \newline
$ \Delta E = E_f - E_i = B \cdot \left( \frac{1}{n_i^2} - \frac{1}{n_f^2} \right) $ \newline
$ \lambda = \frac{h}{m \cdot v} = \frac{c}{\nu} $ \newline
&
\textbf{Thermodynamique} \newline
$ \Delta_r H^0 = \sum n_P \cdot \Delta_f H^0_P - \sum n_R \cdot \Delta_f H^0_R $ \newline
$ \Delta_r S^0 = \sum n_P \cdot S^0_P - \sum n_R \cdot S^0_R $ \hfill Exoth. si $ \Delta_r H^0 < 0 $ \newline
$ \Delta_r G^0 = \sum n_P \cdot \Delta_f G^0_P - \sum n_R \cdot \Delta_f G^0_R $ \newline
$ \Delta_r G^0 = \Delta_r H^0 - T \cdot \Delta_r S^0 $ \hfill Spont. si $ \Delta_r G^0 < 0 $ \newline
$ \Delta S_{univers} = \Delta_r S^0 - \frac{\Delta_r H^0}{T} $ \newline
$ \Delta_r H^0 = \Delta_r U^0 + P \cdot \Delta V = \Delta_r U^0 + R \cdot T \cdot \Delta n $ \newline
\\ \hline
\textbf{Équilibres} \newline
$ K_c = \frac{\prod [P]^{n_P}}{\prod [R]^{n_R}} $ \newline
$ K_p = \frac{\prod P_P^{n_P}}{\prod P_R^{n_R}} $ \newline
$ K_c = K_p \cdot ( R \cdot T)^{-\Delta n} $ \newline
&
\textbf{Activités} \newline
$ a_i = \frac{P_i}{P_0} $ \hfill Gaz \newline
$ a_i = \frac{c_i}{c_0} $ \hfill Solutés \newline
$ a_i = 1 $ \hfill Liquides et solides \newline
$ K = \frac{\prod a_P^{n_P}}{\prod a_R^{n_R}} $ \newline
\\ \hline
\textbf{Équilibres II} \newline
$ \Delta_r G = \Delta_r G^0 + R \cdot T \cdot \ln(Q) $ \newline
$ \Delta_r G^0 = -R \cdot T \cdot \ln(K) $ \newline
$ \ln\left(\frac{K_{T_2}}{K_{T_1}}\right) = \frac{\Delta_r H^0}{R} \cdot \frac{T_2 - T_1}{T_2 \cdot T_1} $ \newline
$ \Delta n = \sum n_P - \sum n_R $ \newline
&
\textbf{Acide-Base} \newline
$ K_a = \frac{[A^-][H_3O^+]}{[HA]} $ \newline
$ K_b = \frac{[HA][OH^-]}{[A^-]} $ \newline
$ pX = -\log([X]) $ \newline
$ pK_e = pK_a + pK_b = pH + pOH = 14 $ \hfill Eau \newline
$ \alpha = \sqrt{\frac{K_a}{M}} $ \hfill $ \alpha \leqslant 0.05 $ \newline
$ pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right) $ \hfill Solution tampon \newline
\\ \hline
\textbf{Électrochimie} \newline
$ n = \frac{I \cdot t}{z \cdot F} $ \newline
$ \eta = \frac{\Delta_r G^0}{\Delta_r H^0} $ \newline
$ \Delta E^0 = E^0_+ - E^0_- $ \hfill Spont. si $ \Delta E^0 > 0 $ \newline
$ \Delta_r G^0 = -z \cdot F \cdot \Delta E^0 $ \newline
$ \ln(K) = -\frac{\Delta_r G^0}{R \cdot T} = \frac{z \cdot F \cdot \Delta E^0}{R \cdot T} $ \newline
$ E_{Ox/Red} = E^0_{Ox/Red} + 2.3 \cdot \frac{R \cdot T}{z \cdot F} \cdot \log\left(\frac{[Ox]^{n_{Ox}}}{[Red]^{n_{Red}}}\right) $ \newline
&
\textbf{Cinétique} \newline
$ v = -\frac{1}{n_R} \cdot \frac{\mathrm{d}[R]}{\mathrm{d}t} = \frac{1}{n_P} \cdot \frac{\mathrm{d}[P]}{\mathrm{d}t} $ \newline
$ \tau_{1/2} = \frac{\ln(2)}{k} $ \hfill Ordre 1 \newline
$ \tau_{1/2} = \frac{1}{k \cdot [A]_0} $ \hfill Ordre 2 \newline
$ k = A_f \cdot e^{-\frac{E_a}{R \cdot T}} $ \newline
$ \ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \cdot \left( \frac{1}{T_1} - \frac{1}{T_2} \right) $ \newline
$ \Delta_r H^0 = E_a^\rightarrow - E_a^\leftarrow $ \newline
\\ \hline
\textbf{Constantes} \newline
$ N_A = \SI{6.02e23}{mol^{-1}} $ \newline
$ h = \SI{6.63e-34}{J.s} $ \newline
$ B = \SI{2.179e-18}{J} $ \newline
$ F = \SI{96487}{C.mol^{-1}} $ \newline
$ R = \SI{0.0821}{L.atm.K^{-1}.mol^{-1}} $ \newline
$ R = \SI{0.0831}{L.bar.K^{-1}.mol^{-1}} $ \newline
&
\textbf{Conditions} \newline
Conditions normales : \SI{101.3}{kPa} et \SI{0}{°C} \newline
Conditions standard : \SI{1}{bar} et \SI{25}{°C} \newline \newline
$ R = \SI{8.314}{L.kPa.K^{-1}.mol^{-1}} $ \newline
$ R = \SI{8.314}{J.K^{-1}.mol^{-1}} $ \newline
$ R = \SI{8.314}{m^3.Pa.K^{-1}.mol^{-1}} $ \newline
\\ \hline
\end{tabularx}
\offinterlineskip
\begin{tabularx}{\textwidth}{ |X|X|X| }
\textbf{Loi de vitesse} & \textbf{Loi intégrée} & \textbf{Forme linéaire} \\
$ -\frac{\mathrm{d}[A]}{\mathrm{d}t} = k $ \hfill Ordre 0 & $ [A]_t = [A]_0 - k \cdot t $ & $ [A]_t = [A]_0 - k \cdot t $ \\
$ -\frac{\mathrm{d}[A]}{\mathrm{d}t} = k \cdot [A] $ \hfill Ordre 1 & $ [A]_t = [A]_0 \cdot e^{-k \cdot } $ & $ \ln([A]_t) = \ln([A]_0) - k \cdot t $ \\
$ -\frac{\mathrm{d}[A]}{\mathrm{d}t} = k \cdot [A]^2 $ \hfill Ordre 2 & $ [A]_t = \frac{[A]_0}{1 + k \cdot t \cdot [A]_0} $ & $ \frac{1}{[A]_t} = \frac{1}{[A]_0} + k \cdot t $ \newline \\
\hline
\end{tabularx}
\offinterlineskip
\begin{tabularx}{\textwidth}{ |X|X| }
\textbf{Construction d'une molécule} \newline
\begin{itemize}
\item Dénombrer les électrons de valence de tous les atomes de la molécule ou de lion.
\item Dessiner le squelette de la molécule en relient les atomes les un aux autres par une pair délectrons; latome le moins électronégatif occupe la place centrale.
\item Compléter les octets des atomes liés à latome central.
\item Placer les électrons restants sur latome centrale.
\item Si les nombres délectrons disponibles est insuffisant, introduire des liaisons multiples et attribuer les charges de lion.
\end{itemize}
&
\textbf{Équilibrage d'une réaction} \newline
\begin{itemize}
\item Repérer les éléments dont le degré doxydation (DO) change au cours de la réaction.
\item Le nombre délectrons cédés par le réducteur doit être égal au nombre délectrons acquis par loxydant. Ceci permet de trouver quatre coefficients.
\item Sil figure dans léquation dautres substances dont le DO nest pas modifié, le coefficient de ces substances est déterminé par un bilan de masse.
\item Si des réactifs et/ou des produits sont des ions, il faut vérifier le calcul par un bilan de charges.
\end{itemize}
\\ \hline
\textbf{Formes} \newline
\begin{itemize}
\item Linéaire (sp).
\item Coudée (sp²).
\item Trigonale plane (sp²).
\item Pyramidale à base triangulaire (sp³).
\item Tétraèdrique (sp³).
\end{itemize}
&
\textbf{Nombres quantiques} \newline
\begin{itemize}
\item Principal : $ n \geqslant 1 $ \hfill Couche
\item Secondaire : $ 0 \leqslant l \leqslant n-1 $ \hfill Forme
\item Magnétique : $ -l \leqslant m_l \leqslant l $ \hfill Orientation
\item Spin : $ m_s = \pm 1/2 $ \hfill Sens de rotation sur lui-même
\end{itemize}
\\ \hline
\end{tabularx}
\begin{tabularx}{\textwidth}{ |X|X| }
\hline
\textbf{Rayon atomique} \newline\newline
\includegraphics[width=0.45\textwidth,keepaspectratio=true]{./rayon.png} \newline
&
\textbf{Électronégativité} \newline\newline
\includegraphics[width=0.45\textwidth,keepaspectratio=true]{./electronegativite.png} \newline
\\ \hline
\textbf{Pouvoir oxydant} \newline\newline
\includegraphics[width=0.45\textwidth,keepaspectratio=true]{./oxydant.png} \newline
&
\textbf{Énergie de ionisation} \newline\newline
\includegraphics[width=0.45\textwidth,keepaspectratio=true]{./ionisation.png} \newline
\\ \hline
\textbf{Caractère métallique} \newline\newline
\includegraphics[width=0.45\textwidth,keepaspectratio=true]{./metallique.png} \newline
&
\textbf{Résumé} \newline\newline
\includegraphics[width=0.45\textwidth,keepaspectratio=true]{./relations.png} \newline
\\ \hline
\textbf{Géométrie} \newline\newline
\includegraphics[width=0.45\textwidth,keepaspectratio=true]{./geometrie.png} \newline
&
\textbf{Titrage} \newline\newline
{
\begin{tabularx}{\textwidth}{cc}
\includegraphics[width=0.22\textwidth,keepaspectratio=true]{./titrage-fort.png} \newline &
\includegraphics[width=0.22\textwidth,keepaspectratio=true]{./titrage-faible.png} \newline
\end{tabularx}
}
\\ \hline
\end{tabularx}
\end{document}

BIN
diagramme-PT.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

BIN
diagramme-PV.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 337 KiB

BIN
diagramme-phase.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 238 KiB

BIN
electronegativite.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 240 KiB

BIN
geometrie.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

BIN
ionisation.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 169 KiB

BIN
lennard-jones.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

BIN
metallique.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

BIN
oxydant.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

BIN
ph.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

212
physique-I.tex Normal file
View File

@ -0,0 +1,212 @@
\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\usepackage{xltxtra}
\usepackage{pbox}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{tabularx}
\usepackage[top=13pt, bottom=12pt, left=13pt, right=12pt]{geometry}
% \setromanfont[Mapping=tex-text]{Linux Libertine O}
% \setsansfont[Mapping=tex-text]{DejaVu Sans}
% \setmonofont[Mapping=tex-text]{DejaVu Sans Mono}
\title{}
\author{}
\date{}
\let\oldcdot\cdot
\let\oldbullet\bullet
\let\oldvec\vec
\let\olddot\dot
\let\oldddot\ddot
% \renewcommand{\cdot}{ }
\renewcommand{\bullet}{\circ}
% \renewcommand{\vec}{\mathbf}
% \renewcommand{\dot}[1]{\frac{\mathrm{d}#1}{\mathrm{d}t}}
% \renewcommand{\ddot}[1]{\frac{\mathrm{d^2}#1}{\mathrm{d}t^2}}
% \renewcommand{\frac}[2]{#1 / #2}
\newcommand{\cdotbis}{ }
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt}
\begin{document}
% \maketitle
\begin{tabularx}{\textwidth}{ |X|X|X| }
\hline
\textbf{Produits vectoriels} \newline
$ \vec{e}_x \times \vec{e}_y = -\vec{e}_y \times \vec{e}_x = \vec{e}_z $ \newline
$ \vec{e}_y \times \vec{e}_z = -\vec{e}_z \times \vec{e}_y = \vec{e}_x $ \newline
$ \vec{e}_z \times \vec{e}_x = -\vec{e}_x \times \vec{e}_z = \vec{e}_y $ \newline
$ \vec{e}_x \times \vec{e}_x = \vec{e}_y \times \vec{e}_y = \vec{e}_z \times \vec{e}_z = \vec{0} $ \newline
&
\textbf{MRUA} \newline
$ r = \frac{1}{2} \cdot a_0 \cdot t^2 + v_0 \cdot t + r_0 $ \newline
$ v = a_0 \cdot t + v_0 $ \newline
$ a = a_0 $ \newline
&
\textbf{MCU} \newline
$ a = \frac{v^2}{r} = \omega^2 \cdot r$ \newline
$ \vec{v} = \vec{\omega} \times \vec{r} $ \newline
$ \vec{a} = \vec{\alpha} \times \vec{r} $ \newline
$ \omega \cdot T = 2 \cdot \pi $ \newline
\\ \hline
\textbf{Moments / Centre de masse} \newline
$ \vec{L}_O = \vec{r} \times \vec{p} = m \cdot \vec{r} \times \vec{v} $ \newline
$ \vec{M}_O = \vec{r} \times \vec{F} = \frac{\mathrm{d}\vec{L}_O}{\mathrm{d}t} $ \newline
$ \vec{r}_{cm} = \frac{1}{M} \int_{M} \vec{r} \cdot \mathrm{d}m = \frac{1}{M} \int_{V} \vec{r} \cdot \rho(\vec{r}) \cdot \mathrm{d}V $ \newline
$ I_{cm,\Delta} = \int_{M} r_\bot^2 \cdot \mathrm{d}m $ \newline
$ \vec{L}_{cm,\Delta} = I_{cm,\Delta} \cdot \vec{\omega} $ \newline
$ \vec{M}_{cm,\Delta} = I_{cm,\Delta} \cdot \vec{\alpha} $ \newline
$ I = I_{cm} + M \cdot r^2 $ \newline
$ \vec{r}_{cm} = \frac{1}{M} \sum m_i \cdot \vec{r}_i $ \newline
&
\textbf{Forces} \newline
$ \vec{p} = m \cdot \vec{v} $ \newline
$ \vec{F} = m \cdot \vec{a} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} $ \newline
$ \vec{F}_f = \mu \cdot \vec{N} $ \newline
$ \vec{F}_f = -K \cdot \eta \cdot \vec{v} $ \newline
$ W = \int \vec{F} \bullet \mathrm{d}\vec{r} $ \newline
$ P_{inst} = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F} \bullet \vec{v} $ \newline
$ P_{moy} = \frac{W}{\Delta t} $ \newline
&
\textbf{Énergie} \newline
$ W = \Delta E $ \newline
$ E_{mec} = E_{cin} + E_{pot} $ \newline
$ E_{mec,sat} = - \frac{G \cdot M \cdot m}{2 \cdot r} $ \newline
$ E_{cin} = \frac{1}{2} \cdot m \cdot v^2 $ \newline
$ E_{cin} = \frac{1}{2} \cdot m \cdot \omega_0^2 \cdot (A^2 - x^2) $ \newline
$ E_{cin} = \frac{1}{2} \cdot I_{cm,\Delta} \cdot \omega^2 $ \newline
$ E_{pot} = m \cdot g \cdot h $ \newline
$ E_{pot} = \frac{1}{2} \cdot k \cdot x^2 = \frac{1}{2} \cdot m \cdot \omega_0^2 \cdot x^2 $ \newline
$ E_{pot} = - \frac{G \cdot M \cdot m}{r} $ \newline
\\ \hline
\textbf{Référentiel non-galiléen} \newline
$ m \cdot \vec{a}' = \sum \vec{F}_{ext} - m \cdot \vec{a}_e - m \cdot \vec{a}_{Cor} $ \newline
$ - m \cdot \vec{a}_e = - m \cdot \vec{\omega} \times (\vec{\omega} \times \vec{r})$ \newline
$ - m \cdot \vec{a}_{Cor} = - 2 \cdot m \cdot \vec{\omega} \times \vec{v}' $ \newline
&
\textbf{Balistique} \newline
$ h_{max} = \frac{(v_0 \cdot \sin(\alpha))^2}{2 \cdot g} $ \newline
$ p = \frac{v_0^2 \cdot \sin(2 \cdot \alpha)}{g} $ \newline
&
\textbf{Intégrales volumiques} \newline
$ V = \iiint\limits_{cube} \mathrm{d}V = \iiint \mathrm{d}x \cdot \mathrm{d}y \cdot \mathrm{d}z $ \newline
$ V = \iiint\limits_{cylindre} \mathrm{d}V = \iiint \rho \cdot \mathrm{d}\rho \cdot \mathrm{d}\varphi \cdot \mathrm{d}z $ \newline
$ V = \iiint\limits_{boule} \mathrm{d}V = \iiint r^2 \cdot \sin(\theta) \cdot \mathrm{d}r \cdot \mathrm{d}\theta \cdot \mathrm{d}\varphi $ \newline
\\ \hline
\textbf{Kepler} \newline
$ \frac{a^3}{T^2} = \frac{G \cdot M}{4 \cdot \pi^2} $ \hfill 1\textsuperscript{ère} loi \newline
$ \frac{\mathrm{d}\vec{A}}{\mathrm{d}t} = \frac{1}{2} \cdot \vec{r} \times \vec{v} = \frac{\vec{L}_O}{2 \cdot m} $ \hfill 2\textsuperscript{ème} loi \newline
$ \vec{F} = - \frac{G \cdot M \cdot m}{r^2} \cdot \vec{u_r} $ \hfill 3\textsuperscript{ème} loi \newline
$ T = 2 \cdot \pi \sqrt{\frac{R^3}{G \cdot M}} $ \newline
&
\textbf{Dérivées usuelles} \newline
$ v = \dot{r} $ \newline
$ a = \dot{v} = \ddot{r} $ \newline
$ \omega = \dot{\varphi} $ \newline
$ \alpha = \dot{\omega} = \ddot{\varphi} $ \newline
$ F = \dot{p} $ \newline
$ P = \dot{W} $ \newline
$ M = \dot{L} $ \newline
&
\textbf{} \newline
\includegraphics[width=0.25\textwidth,keepaspectratio=true]{./sys_coord.png} \newline
\\ \hline
\textbf{Ressort / Pendule} \newline
$ \vec{F} = -k \cdot \vec{r} = -k \cdot (\vec{l} - \vec{l}_0) $ \hfill (ressort) \newline
$ T_0 = \frac{2 \cdot \pi}{\omega_0} $ \newline
$ f_0 = \frac{1}{T_0} = \frac{\omega_0}{2 \cdot \pi} $ \newline
$ \omega_0 = \sqrt{\frac{k}{m}} \text{ ou } \omega_0 = \sqrt{\frac{g}{l}} $ \newline
$ \ddot{x} + \omega_0^2 \cdot x = 0 $ \newline
$ x(t) = A_1 \cdot \cos(\omega_0 \cdot t + \Phi) $ \newline
&
\textbf{Oscillateurs} \newline
$ \ddot{x} + 2 \cdot \lambda \cdot \dot{x} + \omega_0^2 \cdot x = 0 \mid x = C \cdot e^{\gamma \cdot t} $ \newline
$ \gamma = - \lambda \pm \sqrt{\lambda^2 - \omega_0^2} $ \newline
$ \omega = \sqrt{| \omega_0^2 - \lambda^2 |} $ \newline
$ x(t) = A \cdot e^{- \lambda \cdot t} \cdot \cos(\omega \cdot t + \Phi), $ \hfill $ \lambda^2 < \omega_0^2 $ \newline
$ x(t) = e^{- \lambda \cdot t} \cdot (A_1 \cdot e^{\omega \cdot t} + A_2 \cdot e^{-\omega \cdot t}), $ \hfill $ \lambda^2 > \omega_0^2 $ \newline
$ x(t) = (A + B \cdot t) \cdot e^{- \lambda \cdot t}, $ \hfill $ \lambda^2 = \omega_0^2 $ \newline
&
\textbf{Oscillateurs forcés} \newline
$ \ddot{x} + 2 \cdot \lambda \cdot \dot{x} + \omega_0^2 \cdot x = f \cdot \cos(\Omega \cdot t) $ \newline
$ x = A(\Omega) \cdot \cos(\Omega \cdot t + \psi) $ \newline
$ \underline{x} = A(\Omega) \cdot e^{i \cdot \psi(\Omega)} \cdot e^{i \cdot \Omega \cdot t} = x_0 \cdot e^{i \cdot \Omega \cdot t} $ \newline
$ \omega_0 = \sqrt{\frac{k}{m}}, \lambda = \frac{\chi}{2 \cdot m}, f = \frac{F_e}{m} $ \newline
$ \omega = \sqrt{w_0^2 - \lambda^2}$ \newline
$ x_0 = A(\Omega) \cdot e^{i \cdot \psi(\Omega)} = \frac{f}{\omega_0^2 - \Omega^2 + i \cdot 2 \cdot \lambda \cdot \Omega} $ \newline
$ A(\Omega) = \|x_0\| = \frac{f}{\sqrt{(\omega_0^2 - \Omega^2)^2 + (2 \cdot \lambda \cdot \Omega)^2}} $ \newline
$ \psi(\Omega) = \arctan(\frac{\Im(x_0)}{\Re(x_0)}) = \arctan(\frac{-2 \cdot \lambda \cdot \Omega}{\omega_0^2 - \Omega^2}) $ \newline
$ \Omega_r = \sqrt{w_0^2 - 2 \cdot \lambda^2} $ \hfill $ \frac{\mathrm{d}A(\Omega)}{\mathrm{d}\Omega} = 0 $ \newline
$ Q = \frac{\Omega_r}{\Delta \Omega} = \frac{\Omega_r^2}{2 \cdot \lambda \cdot \omega} $ \newline
\\ \hline
\textbf{Coordonnées polaires $ (O,\vec{e_r},\vec{e}_{\varphi}) $} \newline
$ \vec{r} = r \cdotbis \vec{e_r} $ \newline
$ \vec{v} = \dot{r} \cdotbis \vec{e_r} + r \cdotbis \dot{\varphi} \cdotbis \vec{e}_{\varphi} $ \newline
$ \vec{a} = (\ddot{r} - r \cdotbis \dot{\varphi}^2) \cdotbis \vec{e_r} + (r \cdotbis \ddot{\varphi} + 2 \cdotbis \dot{r} \cdotbis \dot{\varphi}) \cdotbis \vec{e}_{\varphi} $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e_r} = \dot{\varphi} \cdotbis \vec{e}_{\varphi} $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e}_{\varphi} = -\dot{\varphi} \cdotbis \vec{e_r} $ \newline
&
\textbf{Coord. cylindriques $ (O,\vec{e}_{\rho},\vec{e}_{\varphi},\vec{e}_z) $} \newline
$ \vec{r} = \rho \cdotbis \vec{e}_{\rho} + z \cdotbis \vec{e}_z $ \newline
$ \vec{v} = \dot{\rho} \cdotbis \vec{e}_{\rho} + \rho \cdotbis \dot{\varphi} \cdotbis \vec{e}_{\varphi} + \dot{z} \cdotbis \vec{e}_z $ \newline
$ \vec{a} = (\ddot{\rho} - \rho \cdotbis \dot{\varphi}^2) \cdotbis \vec{e}_{\rho} + (\rho \cdotbis \ddot{\varphi} + 2 \cdotbis \dot{\rho} \cdotbis \dot{\varphi}) \cdotbis \vec{e}_{\varphi} + \ddot{z} \cdotbis \vec{e}_z $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e}_{\rho} = \dot{\varphi} \cdotbis \vec{e}_{\varphi} $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e}_{\varphi} = -\dot{\varphi} \cdotbis \vec{e}_{\rho} $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e}_z = 0 $ \newline
&
\textbf{Coord. sphériques $ (O,\vec{e}_{r},\vec{e}_{\theta},\vec{e}_{\varphi}) $} \newline
$ \vec{r} = r \cdotbis \vec{e_r}$ \newline
$ \vec{v} = \dot{r} \cdotbis \vec{e_r} + r \cdotbis \dot{\theta} \cdotbis \vec{e}_{\theta} + r \cdotbis \dot{\varphi} \cdotbis \sin(\theta) \cdotbis \vec{e}_{\varphi} $ \newline
$ \vec{a} = \begin{pmatrix}
\ddot{r} - \dot{r} \cdotbis \dot{\theta}^2 - r \cdotbis \dot{\varphi}^2 \cdotbis \sin^2(\theta) \\
2 \cdotbis \dot{r} \cdotbis \dot{\theta} + r \cdotbis \ddot{\theta} - r \cdotbis \dot{\varphi}^2 \cdotbis \sin(\theta) \cdotbis \cos(\theta) \\
2 \cdotbis \dot{r} \cdotbis \dot{\varphi} \cdotbis \sin(\theta) + r \cdotbis \ddot{\varphi} \cdotbis \sin(\theta) + 2 \cdotbis r \cdotbis \dot{\varphi} \cdotbis \dot{\theta} \cdotbis \cos(\theta) \\
\end{pmatrix} $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e_r} = \dot{\theta} \cdotbis \vec{e}_{\theta} + \dot{\varphi} \cdotbis \sin(\theta) \cdotbis \vec{e}_{\varphi} $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e}_{\theta} = -\dot{\theta} \cdotbis \vec{e_r} + \dot{\varphi} \cdotbis \cos(\theta) \cdotbis \vec{e}_{\varphi} $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \cdotbis \vec{e}_{\varphi} = -\dot{\varphi} \cdotbis \sin(\theta) \cdotbis \vec{e_r} - \dot{\varphi} \cdotbis \cos(\theta) \cdotbis \vec{e}_{\theta} $ \newline
\\ \hline
\textbf{Équations de base} \newline
$ \sum \vec{F} = m \cdot \vec{a} $ \newline
$ \sum \vec{M}_O = \frac{\mathrm{d}}{\mathrm{d}t} \vec{L}_O $ \newline
$ \sum \vec{p} = cte $ \newline
$ E_i - E_f = 0 $ \newline
&
\textbf{Signes} \newline
$ r, v, a, \omega, \alpha, F $ \hfill avec \newline
$ M, L, p $ \hfill sans \newline
&
\textbf{Angles} \newline
$ \cos(\pi \pm \alpha) = - \cos(\alpha) $ \newline
$ \cos(\frac{\pi}{2} + \alpha) = - \sin(\alpha) $ \newline
$ \cos(\frac{\pi}{2} - \alpha) = \sin(\alpha) $ \newline
$ \sin(\pi + \alpha) = - \sin(\alpha) $ \newline
$ \sin(\pi - \alpha) = \sin(\alpha) $ \newline
$ \sin(\frac{\pi}{2} \pm \alpha) = \cos(\alpha) $ \newline
\\ \hline
% &
% \textbf{Configurabilité} \newline
% $ a \oldcdot b $ ou $ a b$ \newline
% $ \frac{a}{b} $ ou $ a/b$ \newline
% $ \vec{a} \oldbullet \vec{b} $ ou $ \vec{a} \circ \vec{b} $ \newline
% $ \oldvec{a} $ ou $ \overrightarrow{a} $ ou $ \mathbf{a} $ ou $ \oldvec{\mathbf{a}} $ \newline
% $ \dot{x} $ ou $ \frac{\mathrm{d}x}{\mathrm{d}t} $ \newline
% $ \ddot{x} $ ou $ \frac{\mathrm{d^2}x}{\mathrm{d}t^2} $ \newline
% &
% \\ \hline
\end{tabularx}
\end{document}

267
physique-II.tex Normal file
View File

@ -0,0 +1,267 @@
\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\usepackage{xltxtra}
\usepackage{pbox}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{tabularx}
\usepackage{siunitx}
\usepackage[top=13pt, bottom=12pt, left=13pt, right=12pt]{geometry}
% \setromanfont[Mapping=tex-text]{Linux Libertine O}
% \setsansfont[Mapping=tex-text]{DejaVu Sans}
% \setmonofont[Mapping=tex-text]{DejaVu Sans Mono}
\title{}
\author{}
\date{}
\let\oldcdot\cdot
\let\oldbullet\bullet
\let\oldvec\vec
\let\olddot\dot
\let\oldddot\ddot
% \renewcommand{\cdot}{ }
\renewcommand{\bullet}{\circ}
% \renewcommand{\vec}{\mathbf}
% \renewcommand{\dot}[1]{\frac{\mathrm{d}#1}{\mathrm{d}t}}
% \renewcommand{\ddot}[1]{\frac{\mathrm{d^2}#1}{\mathrm{d}t^2}}
% \renewcommand{\frac}[2]{#1 / #2}
\newcommand{\cdotbis}{ }
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt}
\begin{document}
% \maketitle
\begin{tabularx}{\textwidth}{ |X|X| }
\hline
\textbf{Potentiels} \newline
$ F_x = -\frac{\partial U}{\partial x} $ \newline
$ \frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x} $ \newline
&
\textbf{Lagrange} \newline
$ U = \sum m \cdot g \cdot h + \sum \frac{1}{2} \cdot k \cdot x^2 $ \newline
$ T = \sum \frac{1}{2} \cdot m \cdot v^2 + \sum \frac{1}{2} \cdot I \cdot \omega^2 $ \newline
$ L = T -U $ \newline
$ \frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial}{\partial \dot{q_j}} L \right) - \frac{\partial}{\partial q_j} L = 0 $ \newline
\\ \hline
\textbf{Gaz} \newline
$ P \cdot V = n \cdot R \cdot T = N \cdot k_B \cdot T $ \hfill Parfait \newline
$ \left( p + \frac{n^2 \cdot a}{V^2} \right) (V -n \cdot b) = n \cdot R \cdot T $ \hfill Van der Waals \newline
&
\textbf{Maxwell-Boltzmann} \newline
$ P_i = Cst \cdot e^{-\frac{E_i}{k_B \cdot T}} $ \newline
$ \sum P_i = 1 $ \newline
\\ \hline
\textbf{Lois thermodynamiques} \newline
$ \mathrm{d} U = \delta W + \delta Q $ \hfill 1\textsuperscript{ère} \newline
$ \mathrm{d} S = \delta S_{ext} + \delta S_{int} = \frac{\delta Q}{T} + \delta S_{int} $ \hfill 2\textsuperscript{ème} \newline
&
\textbf{Énergies} \newline
$ U = \frac{f}{2} \cdot n \cdot R \cdot T $ \newline
$ H = U + P \cdot V = \frac{f}{2} \cdot n \cdot R \cdot T + n \cdot R \cdot T $ \newline
\\ \hline
\textbf{Isentropie} \newline
$ P \cdot V^\gamma = cte $ \newline
$ T \cdot V^{\gamma - 1} = cte $ \newline
&
\textbf{Énergies II} \newline
$ U = C_v \cdot \Delta T $ \newline
$ Q = C_v \cdot \Delta T $ \hfill Isochore \newline
$ Q = C_p \cdot \Delta T $ \hfill Isobare \newline
$ W = - \int p_{ext} \cdot \mathrm{d}V = -W_{ext}$ \newline
\\ \hline
\textbf{Chaleurs} \newline
$ C_p = C_v \cdot \gamma $ \newline
$ C_p = C_v + n \cdot R $ \newline
$ C_v = \frac{\partial U}{\partial T} = \frac{n \cdot R}{\gamma -1} $ \newline
$ C_p = \frac{\partial H}{\partial T} = \frac{\gamma \cdot n \cdot R}{\gamma -1} $ \newline
&
\textbf{Rendements} \newline
$ \eta_{Carnot} = \frac{T_c - T_f}{T_c} $ \newline
$ \eta = -\frac{W}{Q_c} $ \hfill Moteur \newline
$ \eta = -\frac{Q_c}{W} $ \hfill Récepteur chauffant \newline
$ \eta = \frac{Q_f}{W} $ \hfill Récepteur refroidissant \newline
\\ \hline
\textbf{Cycle} \newline
$ \circlearrowright $ Cycle moteur \newline
$ \circlearrowleft $ Cycle récepteur \newline
&
\textbf{Cycle} \newline
$ \Delta U = 0 = W + Q $ \newline
$ \Delta S = 0 = \int \frac{\delta Q_f}{T} + \int \frac{\delta Q_c}{T} + S_{int}$ \newline
$ W = - (Q_c + Q_f) $ \newline
\\ \hline
\textbf{Condutibilité} \newline
$ \lambda = \frac{1}{\rho \cdot 4 \cdot \sqrt{2} \cdot \pi \cdot R^2} $ \newline
$ \rho = \frac{p}{k_B \cdot T} $ \newline
$ J_Q = -k \cdot \frac{\partial T}{\partial x} $ \newline
$ \frac{\partial Q}{\partial T} = A \cdot \alpha \cdot \frac{\partial T}{\partial x} $ \hfill $ \lambda \ll d $ \newline
$ \frac{\partial Q}{\partial T} = \mathrm{d}A \cdot \kappa \cdot \Delta T $ \hfill $ \lambda \gg d $ \newline
&
\textbf{Diffusion} \newline
$ \frac{\partial \rho \cdot u}{\partial t} + \frac{\partial J_U}{\partial x} = \sigma_U $ \newline
$ J_U = -\lambda \cdot \frac{\partial T}{\partial x} $ \newline
$ \frac{\partial \rho \cdot u}{\partial t} - \lambda \cdot \frac{\partial^2 T}{\partial x^2} = \sigma_U $ \newline
\\ \hline
\textbf{Lennard-Jones} \newline
$ E = 4 \cdot \varepsilon_0 \cdot \left( \left( \frac{r_1}{r} \right)^{12} - \left( \frac{r_1}{r} \right)^6 \right) $ \newline
$ E = \varepsilon_0 \cdot \left( \left( \frac{r_0}{r} \right)^{12} - 2 \cdot \left( \frac{r_0}{r} \right)^6 \right) $ \newline
&
\textbf{Lennard-Jones II} \newline
\includegraphics[width=0.2\textwidth,keepaspectratio=true]{./lennard-jones.png} \newline
\\ \hline
\end{tabularx}
\offinterlineskip
\begin{tabularx}{\textwidth}{ |X|X|X| }
\textbf{Diagramme de phase} \newline\newline
\includegraphics[width=0.3\textwidth,keepaspectratio=true]{./diagramme-phase.png} \newline
&
\textbf{Diagramme P-V} \newline\newline
\includegraphics[width=0.3\textwidth,keepaspectratio=true]{./diagramme-PV.png} \newline
&
\textbf{Diagramme P-T} \newline\newline
\includegraphics[width=0.3\textwidth,keepaspectratio=true]{./diagramme-PT.png} \newline
\\\hline
\end{tabularx}
\begin{tabularx}{\textwidth}{ |l|X|X|X|X| }
\hline
& Isotherme & Isobare & Isochore & Adiabatique
\\\hline
Constantes &
$\begin{aligned} P \cdot V = cte \end{aligned}$ &
$\begin{aligned} \frac{V}{T} = cte \end{aligned}$ &
$\begin{aligned} \frac{P}{T} = cte \end{aligned}$ &
$\begin{aligned} P \cdot V^\gamma = cte \\ T \cdot V^{\gamma - 1} = cte \end{aligned}$
\\\hline
Énergie interne &
$
\begin{aligned}
\Delta U &= 0
\end{aligned}
$ &
$
\begin{aligned}
\Delta U &= C_v \cdot \Delta T \\
&= \frac{n \cdot R}{\gamma - 1} \Delta T \\
&= \frac{p_0}{\gamma - 1} \Delta V \\
&= C_v \cdot \frac{T_0}{V_0} \cdot \Delta V
\end{aligned}
$ &
$
\begin{aligned}
\Delta U &= C_v \cdot \Delta T \\
&= \frac{n \cdot R}{\gamma - 1} \Delta T \\
&= \frac{V_0}{\gamma - 1} \Delta p \\
&= C_v \cdot \frac{T_0}{p_0} \cdot \Delta p
\end{aligned}
$ &
$
\begin{aligned}
\Delta U &= C_v \cdot \Delta T \\
&= \frac{n \cdot R}{\gamma - 1} \Delta T \\
&= \frac{p_0 \cdot V_0^\gamma}{\gamma - 1} \Delta (V^{1-\gamma})
\end{aligned}
$
\\\hline
Chaleur &
$
\begin{aligned}
Q &= n \cdot R \cdot T_0 \cdot \ln \frac{V_1}{V_0} \\
&= n \cdot R \cdot T_0 \cdot \ln \frac{p_1}{p_0} \\
\end{aligned}
$ &
$
\begin{aligned}
Q &= C_p \cdot \Delta T \\
&= \frac{\gamma \cdot n \cdot R}{\gamma - 1} \Delta T \\
&= \frac{\gamma \cdot p_0}{\gamma - 1} \Delta V \\
\end{aligned}
$ &
$
\begin{aligned}
Q &= C_v \cdot \Delta T \\
&= \frac{n \cdot R}{\gamma - 1} \Delta T \\
&= \frac{V_0}{\gamma - 1} \Delta p \\
\end{aligned}
$ &
$
\begin{aligned}
Q &= 0
\end{aligned}
$
\\\hline
Travail &
$
\begin{aligned}
W &= -n \cdot R \cdot T_0 \cdot \ln \frac{V_1}{V_0} \\
&= -n \cdot R \cdot T_0 \cdot \ln \frac{p_1}{p_0} \\
\end{aligned}
$ &
$
\begin{aligned}
W &= -p_0 \cdot \Delta V \\
&= -n \cdot R \cdot \Delta T \\
&= -p_0 \cdot \frac{V_0}{T_0} \cdot \Delta V \\
\end{aligned}
$ &
$
\begin{aligned}
W &= 0 \\
\end{aligned}
$ &
$
\begin{aligned}
W &= C_v \cdot \Delta T \\
&= \frac{n \cdot R}{\gamma - 1} \Delta T \\
&= \frac{p_0 \cdot V_0^\gamma}{\gamma - 1} \Delta (V^{1-\gamma})
\end{aligned}
$
\\\hline
Entropie &
$
\begin{aligned}
\Delta S &= n \cdot R \cdot \ln \frac{V_1}{V_0} \\
&= n \cdot R \cdot \ln \frac{p_1}{p_0} \\
\end{aligned}
$ &
$
\begin{aligned}
\Delta S &= C_p \cdot \ln \frac{V_1}{V_0} \\
&= \frac{\gamma \cdot n \cdot R}{\gamma - 1} \cdot \ln \frac{V_1}{V_0} \\
&= C_p \cdot \ln \frac{T_1}{T_0} \\
&= \frac{\gamma \cdot n \cdot R}{\gamma - 1} \cdot \ln \frac{T_1}{T_0}
\end{aligned}
$ &
$
\begin{aligned}
\Delta S &= C_v \cdot \ln \frac{p_1}{p_0} \\
&= \frac{n \cdot R}{\gamma - 1} \cdot \ln \frac{p_1}{p_0} \\
&= C_v \cdot \ln \frac{T_1}{T_0} \\
&= \frac{n \cdot R}{\gamma - 1} \cdot \ln \frac{T_1}{T_0}
\end{aligned}
$ &
$
\begin{aligned}
\Delta S &= 0
\end{aligned}
$
\\\hline
\end{tabularx}
\end{document}

BIN
rayon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 235 KiB

BIN
relations.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

BIN
sys_coord.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

BIN
titrage-faible.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

BIN
titrage-fort.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB